Pseudopolymeric Thallium(I) Di-iso-pentyl Dithiophosphate, [Tl{S2P(O-iso5H11)2}]: Synthesis, Structural Organization (Role of Secondary Tl⋅⋅⋅S and Tl⋅⋅⋅O Interactions in Supramolecular Self-Assembly), and Thermal Behavior

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Crystalline pseudopolymeric thallium(I) di-iso-pentyl dithiophosphate (Dtph), [Tl{S2P(O-iso5H11)2}] (I), is synthesized and characterized in detail by single-crystal XRD (CIF file CCDC no. 2296421), simultaneous thermal analysis (STA), multinuclear (1H, 13C, 31P) NMR and IR spectroscopy. Nonequivalent molecules of two types containing Tl(1) and Tl(2) atoms (hereinafter molecules А and В, respectively) are involved (1 : 1) in the formation of the structure of compound I. In both molecules, the S,S´-anisobidentate coordination of the Dtph ligands (Tl–S bond lengths 3.006–3.092 Å) results in the formation of small-size four-membered metallocycles [TlS2P] (a 'butterfly' conformation) with significantly averaged P–S bond lengths (1.966–1.985 Å). Molecules A and B are structurally ordered upon the construction of supramolecular chains of two types (⋅⋅⋅A⋅⋅⋅A⋅⋅⋅A⋅⋅⋅)n and (⋅⋅⋅B⋅⋅⋅B⋅⋅⋅B⋅⋅⋅)n with oppositely directed structural units combined by paired secondary Tl⋅⋅⋅S and Tl⋅⋅⋅O interactions alternating over the chain length. In turn, paired secondary (but weaker) Tl⋅⋅⋅S interactions occur between molecules A and B belonging to two neighboring pseudopolymeric chains. The multiplisity of these interactions provides the formation of double supramolecular ribbons. The thermal behavior of compound I is studied by the STA technique under an argon atmosphere. Thallium(I) tetrathiophosphate Tl3PS4 is identified as the only end product of the thermolysis of compound I. Electron probe microanalysis (EPMA) and scanning electron microscopy (SEM) are used to study the residual substance.

Full Text

Restricted Access

About the authors

O. A. Bredyuk

Institute of Geology and Nature Management, Far Eastern Branch, Russian Academy of Sciences

Email: alexander.v.ivanov@chemist.com
Russian Federation, Blagoveshchensk

I. A. Lutsenko

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: alexander.v.ivanov@chemist.com
Russian Federation, Moscow

Yu. V. Nelyubina

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: alexander.v.ivanov@chemist.com
Russian Federation, Moscow

S. V. Zinchenko

Favorsky Institute of Chemistry, Siberian Branch, Russian Academy of Sciences

Email: alexander.v.ivanov@chemist.com
Russian Federation, Irkutsk

A. V. Ivanov

Institute of Geology and Nature Management, Far Eastern Branch, Russian Academy of Sciences

Author for correspondence.
Email: alexander.v.ivanov@chemist.com
Russian Federation, Blagoveshchensk

References

  1. Sánchez-Chapul L., Santamaría A., Aschner M. et al. // Front. Genet. 2023. V. 14. Art. 1168713.
  2. Abdolmaleki S., Ghadermazi M., Aliabadi A. // Sci. Rep. 2021. V. 11. Art. 15699.
  3. Sivagurunathan G.S., Ramalingam K., Rizzoli C. // Polyhedron. 2013. V. 65. P. 316.
  4. Gomathi G., Thirumaran S., Ciattini S. // Polyhedron. 2015. V. 102. P. 424.
  5. Manar K.K., Rajput G., Yadav M.K. et al. // ChemistrySelect. 2016. V. 1. № 18. P. 5733.
  6. Liu X.Z., Xue H., Zhao J. et al. // Rare Metals. 1998. V. 17. № 3. P. 232.
  7. Ivanov A.V., Konfederatov V.A., Gerasimenko A.V., Larsson A.-C. // Russ. J. Coord. Chem. 2009. V. 35. № 11. P. 857. https://doi.org/10.1134/S1070328409110116
  8. Rodina T.A., Ivanov A.V., Konfederatov V.A. et al. // Russ. J. Inorg. Chem. 2009. V. 54. № 11. P. 1779. https://doi.org/10.1134/S0036023609110138
  9. Firdoos T., Kumar P., Radha A. et al. // New J. Chem. 2022. V. 46. № 2. P. 832.
  10. Firdoos T., Kumar P., Sharma N. et al. // CrystEngComm. 2023. V. 25. № 26. P. 3777.
  11. Sheldrick G.M. // Acta Crystallogr. A. 2008. V. 64. № 1. P. 112.
  12. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. P. 3.
  13. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. № 2. P. 339.
  14. Kazitsyna L.A. and Kupletskaya N.B. Primenenie UF-, IK-, YaMR- i mass-spektroskopii v organicheskoi khimii (Applicatin of UV, IR, NMR, and Mass Spectroscopy), Moscow: Mosk. Univ., 1979.
  15. Rockett J. // Appl. Spectrosc. 1962. V. 16. № 2. P. 39.
  16. Mehrotra R.C., Srivastava G., Chauhan B.P.S. // Coord. Chem. Rev. 1984. V. 55. № 3. P. 207.
  17. Bellamy L.J. The Infrared Spectra of Complex Molecules, New York: Wiley, 1958.
  18. Ahmad R., Srivastava G., Mehrotra R.C. // Inorg. Chim. Acta. 1984. V. 89. № 1. P. 41.
  19. Rodina T.A., Korneeva E.V., Antzutkin O.N., Ivanov A.V. // Spectrochim. Acta. A. 2015. V. 149. P. 881.
  20. Rodina T.A., Ivanov A.V., Gerasimenko A.V. et al. // Polyhedron. 2011. V. 30. № 13. P. 2210.
  21. Larsson A.-C., Ivanov A.V., Antzutkin O.N., Forsling W. // J. Colloid Interface Sci. 2008. V. 327. № 2. P. 370.
  22. Ivanov A.V., Antzutkin O.N., Forsling W., Rodionova N.A. // Russ. J. Coord. Chem. 2003. V. 29. № 5. P. 301. https://doi.org/10.1023/A:1023611415080
  23. Ivanov A.V., Larsson A.-C., Rodionova N.A. et al. // Russ. J. Inorg. Chem. 2004. V. 49. № 3. Р. 373.
  24. Alcock N.W. // Adv. Inorg. Chem. Radiochem. 1972. V. 15. № 1. P. 1.
  25. Bondi A. // J. Phys. Chem. 1964. V. 68. № 3. P. 441.
  26. Bondi A. // J. Phys. Chem. 1966. V. 70. № 9. P. 3006.
  27. Alvarez S. // Dalton Trans. 2013. V. 42. № 24. P. 8617.
  28. Hu S.-Z., Zhou Z.-H., Robertson B.E. // Z. Kristallogr. 2009. V. 224. № 8. P. 375.
  29. Allinger N.L., Zhou X., Bergsma J. // J. Mol. Struct. (THEOCHEM.) 1994. V. 312. № 1. P. 69.
  30. Bredyuk O.A., Loseva O.V., Ivanov A.V. et al. // Russ. J. Coord. Chem. 2017. V. 43. № 10. P. 638. https://doi.org/10.1134/S1070328417100013
  31. Andrae H., Blachnik R. // J. Alloys Compd. 1992. V. 189. № 2. P. 209.
  32. Toffoli P., Khodadad P., Rodier N. // Bull. Soc. Chim. Fr. 1981. № 11/12. P. 429.
  33. Wibbelmann C., Brockner W., Eisenmann B., Schäfer H. // Z. Naturforsch. B. 1983. V. 38. № 12. P. 1575.
  34. Lavrentyev A.A., Gabrelian B.V., Nikiforov I.Ya. et al. // Phys. Scripta. 2005. V. T115. P. 162.
  35. Lavrentyev A.A., Gabrelian B.V., Vu V.T. et al. // Bull. Russ. Acad. Sci. Phys. 2015. V. 79. № 6. P. 802. https://doi.org/10.3103/S1062873815060179
  36. Lavrentyev A.A., Gabrelian B.V., Nikiforov I.Ya. et al. // J. Phys. Chem. Solids. 2003. V. 64. № 12. P. 2479.
  37. Lavrentyev A.A., Gabrelian B.V., Vu V.T. et al. // J. Struct. Chem. V. 58. № 6. P. 1220. https://doi.org/10.1134/S002247661706021X

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Packing of molecular structural units in crystal I

Download (131KB)
3. Fig. 2. Non-equivalent molecules of complex I: A with Tl(1) and Tl(1)´ atoms (a, b) and B (c). Ellipsoids of 50% probability

Download (257KB)
4. Fig. 3. Method of construction of supramolecular pseudopolymer chains by molecules A (a) and B (b). Intermolecular secondary interactions Tl---S and Tl---O are shown in dotted lines; symmetry transformations: a x, 3/2 - y, ½ + z; b x, 3/2 - y, -½ + z. Alkyl substituents are not given

Download (415KB)
5. Fig. 4. Joining of neighbouring pseudopolymer chains to form a double supramolecular ribbon. All non-equivalent secondary interactions realised between the chains are given. Symmetric transformations: a x, 3/2 - y, ½ + z; b x, 3/2 - y, -½ + z

Download (354KB)
6. Fig. 5. TG (a) and DSC (b) curves; size and shape of I crystals (c)

Download (163KB)
7. Fig. 6. Enlarged fragment of the crucible bottom with residual substance after thermolysis I (a), size, shape and microstructure of substance particles (b) and its energy-dispersive spectrum (c)

Download (381KB)

Copyright (c) 2024 Российская академия наук