Interaction of Lyophilic Zinc(II) Porphyrins with Bovine Serum Albumin

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Palladium-catalyzed heterylation of monobromophenyl-substituted zinc(II) porphyrin with small heterocycles (benzothiazole, benzoxazole, and N-methylbenzimidazole) was carried out. As a result, unsymmetrical heterylphenyl-substituted zinc(II) porphyrins soluble in organic solvents were obtained. The interaction of heteryl-substituted zinc(II) porphyrins with alpha-helical proteins was studied by spectral methods using bovine serum albumin in aqueous organic solvents. It was found that the titration of the zinc(II) porphyrins with albumin in a sodium phosphate buffer involves a number of equilibria including complexation and aggregation. In the case of porphyrins containing N-methylbenzimidazole and benzoxazole residues, self-aggregation processes initiated by absorption of organic solvent molecules by the protein predominate. It was found that more hydrophobic nature of zinc(II) porphyrin with benzothiazole residue promotes the complex formation with the protein. The photochemical properties of zinc(II) porphyrin with a benzothiazole residue, capacity for the photooxidation of the alpha-helical protein, and the high affinity of protein to this porphyrin make it a promising candidate for the potential applicability for photodynamic inactivation.

Full Text

Restricted Access

About the authors

O. I. Koifman

G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences; Ivanovo State University of Chemistry and Technology

Email: yurina_elena77@mail.ru
Russian Federation, Ivanovo; Ivanovo

N. S. Lebedeva

G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences

Email: yurina_elena77@mail.ru
Russian Federation, Ivanovo

E. S. Yurina

G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: yurina_elena77@mail.ru
Russian Federation, Ivanovo

Yu. A. Gubarev

G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences

Email: yurina_elena77@mail.ru
Russian Federation, Ivanovo

S. A. Syrbu

G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences; Ivanovo State University of Chemistry and Technology

Email: yurina_elena77@mail.ru
Russian Federation, Ivanovo; Ivanovo

A. N. Kiselev

G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences

Email: yurina_elena77@mail.ru
Russian Federation, Ivanovo

M. A. Lebedev

G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences; Ivanovo State University of Chemistry and Technology

Email: yurina_elena77@mail.ru
Russian Federation, Ivanovo; Ivanovo

References

  1. Mancuso G., Midiri A., Gerace E. et al. // Pathogens. 2021. V. 10. P. 1310. https://doi.org/10.3390/pathogens10101310
  2. Urban-Chmiel R., Marek A., Stepie´n-Pysniak D. et al. //Antibiotics. 2022. V. 11. № 8. P. 1079. https://doi.org/10.3390/antibiotics11081079
  3. Ten threats to global health in 2019 // World Health Organization. 2019. V. 22. P. 2021. https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019
  4. Kenawy E.R., Worley S.D., Broughton R. // Biomacromolecules. 2007. V. 8. № 5. P. 1359. https://doi.org/10.1021/bm061150q
  5. Stojiljkovic I., Evavold B.D., Kumar V. // Expert opinion on investigational drugs. 2001. V. 10. № 2. P. 309. https://doi.org/10.1517/13543784.10.2.309
  6. König K., Teschke M., Sigusch B. et al. // Cellular Mol. Biol. 2000. V. 46. № 7. P. 1297.
  7. Lebedeva N.S., Gubarev Y.A., Koifman M.O. et al. // Molecules. 2020. V.25. P. 4368 https://www.mdpi.com/1420-3049/25/19/4368
  8. Lebedeva N.S., Koifman O.I. // Russ. J. Bioorg. Chemi. 2022. V. 48. №. 1. P. 1. https://doi.org/10.1134/S1068162022010071
  9. Koifman O.I., Ageeva Т.А., Beletskaya I.P. et al. // Macroheterocycles. 2020. V. 13. № 4. P. 183. https://doi.org/10.6060/mhc200814k
  10. Koifman O.I., Ageeva T.A., Kuzmina N. S. et al. // Macroheterocycles. 2022. V. 15. № 4. P. 207. https://doi.org/10.6060/mhc224870k
  11. Kiselev A.N., Lebedev M.A., Syrbu S.A. et al. // Russ. Chem. Bull. V. 71. № 12. P. 2691. https://doi.org/10.1007/s11172-022-3698-5
  12. Lebedeva N.S., Yurina E.S., Gubarev Y.A. et al. //Mendeleev Commun. 2017. V. 27. № 1. P. 47-49. https://doi.org/10.1016/j.mencom.2017.01.014
  13. Lebedeva N.S., Yurina E.S., Gubarev Y.A. et al. // J. Inclus. Phenom. Macrocycl. Chem. 2019. V. 95. № 3–4. P. 199. https://doi.org/10.1007/s10847-019-00947-1.
  14. Yurina E.S., Gubarev Y.A., Kiselev A.N. et al. // Mendeleev Commun. 2020. V. 30. № 2. P. 211. https://doi.org/10.1016/j.mencom.2020.03.027
  15. Lebedeva N.S., Yurina E.S., Gubarev Y.A. et al. // Spectrochim. Acta. A.2021. V. 246. P. 118975. https://doi.org/10.1016/j.saa.2020.11897.5
  16. Lebedeva N.S., Yurina E.S., Gubarev Y.A. et al. // Russ. J. Gen. Chem. 2019. V. 89. P. 565. https://doi.org/10.1134/S1070363219030368
  17. Ogunsipe A., Nyokong T. // J. Mol. Struct. 2004. V.689. P.89. https://doi.org/10.1016/j.molstruc.2003.10.024
  18. Ormond A.B., Freeman H.S. // Dyes Pigments. 2013. V. 96. № 2. P. 440. https://doi.org/10.1016/j.dyepig.2012.09.011
  19. Figueiredo T.L.C. Johnstone, R. A., Sørensen, A.M.S. et al. // Photochem. Photobiol. 1999. V. 69. № 5. P. 517. https://doi.org/10.1111/j.1751-1097.1999.tb03322.x
  20. Lebedeva N.Sh., Mal´kova E.A., Gubarev Yu.A., et al. Uch. Zap. Petrozavodsk. Gos. Univ. 2014 vol. 1. № 8 (145). P. 12.
  21. Rothemund P., Menotti A.R. // J. Am. Chem. Soc. 1948. V. 70. № 5. P. 1808. https://doi.org/10.1021/ja01185a047
  22. Kiselev A.N., Syrbu S.A., Lebedeva N.Sh. et.al. // Inorganics. 2022. V. 10. № 63. P. 1. https://doi.org/10.3390/inorganics10050063
  23. Akins D.L., Özçelik S., Zhu H. R. et al. // J. Phys Chem. 1996. V. 100. № 34. P. 14390. https://doi.org/10.1021/jp961013v
  24. Ghosh M., Nath S., Hajra A. et al. // J. Lumin. 2013. V. 141. P. 87. https://doi.org/10.1016/j.jlumin.2013.03.025

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Scheme 1. Synthesis of asymmetric heteryl-substituted zinc(II)porphyrins

Download (182KB)
3. Fig. 1. ZnPorO ESP (8.210-6 M) (a) and its fluorescence spectrum (b) in DMFA (dotted line) and PBS-DMFA (0.19 M) (solid line).

Download (165KB)
4. Fig. 2. ESP ZnPorS (4.9910-6 M) (a) and ZnPorN (6���10-6 M) (b) in PBS-DMFA –0.19 M) during titration of BSA (0-6���10-6 M.

Download (146KB)
5. Fig. 3. Corrected fluorescence spectra of BSA (2.2410-5 M) during ZnPorS titration (0-7.82���10-6 M) in PBS–DMFA (0.19 M), taking into account the absorption of ZnPorS.

Download (114KB)
6. Fig. 4. Constants of the observed rate of photooxidation of BSA in the presence of ZnPorX under irradiation with 425 nm light, estimated as the ratio of BSA fluorescence before irradiation (lnF0) to BSA fluorescence (Fi) under irradiation.

Download (72KB)

Copyright (c) 2024 Российская академия наук