Stereochemistry of the cis-Tetrafluoro Complexes of Titanium with 1-Ac-2-[Ph2P(O)]-Cyclohexane (1RS,2SR) Stereoisomers in СН2Сl2

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The monodentate phosphoryl-containing ligand 1-Ac-2-[Ph2P(O)]-cyclohexane (L) bearing two asymmetric carbon atoms is synthesized. The study of its crystal structure shows that L is a racemic mixture of (1R,2S) and (1S,2R) stereoisomers. The complex formation of L with TiF4 in СН2Сl2 is studied by 19F{1Н} and 31Р{1Н} NMR spectroscopy. The compositions of the complexes formed in the solution are determined. Racemic and meso-diastereomers of the octahedral complex cis-TiF4L2 are formed in the solution as found by an analysis of the 19F and 31Р NMR spectra taking into account the concept of heterotropy of organic compounds. The influence of the optical configuration of stereoisomers of the monodentate ligand coexisting in the coordination sphere of the [MF4L2] octahedral tetrafluoro complexes of transition d0 metals on the chemical shifts of the fluorine atoms arranged in the trans positions relative to each other is shown. In the meso-diastereomer of cis-TiF4L2, this results in a nonequivalence of the fluorine atoms on the F–Ti–F' ordinate of the octahedron, and the spin-spin coupling constant JFF' = 286.1 Hz is observed in the 19F{1H} NMR spectrum.

Full Text

Restricted Access

About the authors

E. G. Il’in

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: eg_ilin@mail.ru
Russian Federation, Moscow

A. S. Parshakov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: eg_ilin@mail.ru
Russian Federation, Moscow

V. I. Privalov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: eg_ilin@mail.ru
Russian Federation, Moscow

A. V. Churakov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: eg_ilin@mail.ru
Russian Federation, Moscow

G. V. Bodrin

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: eg_ilin@mail.ru
Russian Federation, Moscow

E. I. Goryunov

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: eg_ilin@mail.ru
Russian Federation, Moscow

References

  1. Safiulina A. M., Matveeva A. G., Evtushenko A. V. et al. // Russ. J. Gen. Chem. 2015. V. 85. № 9. P. 2128.
  2. Goryunov E. I., Bodrin G. V., Goryunova I. B. et al. // Russ. Chem. Bull. 2013. № 3. P. 779.
  3. Il’in E. G., Parshakov A. S., Yarzhemskii V. G. et al. // Dokl. Ross. Akad. Nauk. 2015. V. 465. № 3. P. 314.
  4. Il’in E. G., Parshakov A. S., Danilov V. V. et al. // Dokl. Ross. Akad. Nauk. 2016. V. 471. № 2. P. 163.
  5. Il’in E. G., Parshakov A. S., Danilov V. V. et al. // Russ. J. Coord. Chem. 2018. V. 44. P. 619. https://doi.org/10.1134/S1070328418100068
  6. Il’in E. G., Parshakov A. S., Privalov V. I. et al. // Dokl. Ross. Akad. Nauk. 2016. V. 467. № 5. P. 547.
  7. Il’in E. G., Parshakov A. S., Aleksandrov G. G. et al. // Dokl. Ross. Akad. Nauk. 2016. V. 470. № 2. P. 176.
  8. Il’in E. G., Kovalev V. V., and Nifant’ev E. E. // Dokl. Ross. Akad. Nauk. 2018. V. 479. № 3. P. 283.
  9. Il’in E. G., Parshakov A. S., Danilov V. V. et al. // Russ. J. Coord. Chem. 2019. V. 45. P. 340. https://doi.org/10.1134/S1070328419030035
  10. Parshakov A. S., Privalov V. I. et al. // Russ. J. Coord. Chem. 2019. V. 45. P. 667. https://doi.org/10.1134/S1070328419090057
  11. Krause L., Herbst-Irmer R., Sheldrick G. M., and Stalke D. J. // Appl. Crystallogr. 2015. V. 48. № 1. P. 3. https://doi.org/10.1107/S1600576714022985
  12. Sheldrick G. M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
  13. Groom C. R., Bruno I. J., Lightfoot M. P., and Ward S. C. // Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2016. V. 72. P. 171. https://doi.org/10.1107/S2052520616003954.14
  14. Buslaev Yu.A, and Ilyin E. G. // J. Fluorine Chem. 1984. V. 25. № 1. P. 57.
  15. Potapov V. M. Stereokhimiya (Stereochemistry). Moscow: Khimiya, 1988.
  16. Gaudemer A., Minkin V. I., and Jacques J. // Stereochemistry Fundamental and Methods. V. 1. Kagan H. B., Ed. Stuttgart, 1977. P. 73.
  17. Eliel E. L., Wilen S. H., and Doile M. P. Basic Organic Stereochemistry. New York: Wiley, 2001.
  18. Mislow K, and Raban M. Topics in Stereochemistry // Allinger N. L., and Eliel E. L., Eds. New York: Wiley-Interscience, 1967. V. 1.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The molecular structure of the ligand L. Thermal ellipsoids are shown with a 50% probability.

Download (170KB)
3. Fig. 2. NMR spectrum of 31P{1H} 0.1 M ligand solution in L-PhCHMeNH2.

Download (60KB)
4. Fig. 3. Temperature dependence of NMR spectra of 19F{1H} TiF4 +2L solution in CH2Cl2. A, A' – lines of racemic, B, B', B" – meso-diastereomers of cis-TiF4L2. The B–line is trans- TiF4L2.

Download (130KB)
5. Fig. 4. Temperature dependence of NMR spectra of 31P{1H} TiF4+2L solution in CH2Cl2. A is the signal of trans-TiF4L2, B, C are the lines of racemic and meso-diastereoisomers of cis-TiF4L2, D is the signal of a free ligand.

Download (87KB)
6. Scheme 1.

Download (45KB)
7. Scheme 2.

Download (45KB)
8. Scheme 3.

Download (44KB)
9. Scheme 4.

Download (102KB)

Copyright (c) 2024 Российская академия наук