Complexes of Hexacoordinated Ni(II) Based on Diacetyl bis-hetarylhydrazones: Structures and Magnetic Properties

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Mononuclear nickel complexes [NiL1(NCS)2] ⋅ 2DMSO (I), [NiL1(NCS)2] ⋅ DMF (II), and [NiL2(NCS)2] ⋅ 0,5CH3OH ⋅ 1,5H2O (III) with the distorted octahedral coordination node, where L1 and L2 are the tetradentate ligand systems derived from the products of the condensation of diacetyl with 2-hydrazinoquinoline and 2-hydrazino-4,6-dimethylpyrimidine, respectively, are synthesized. The structures of the compounds are determined by IR pectroscopy and XRD (CIF files ССDС nos. 2219793 (I), 2142035 (II), and 2219794 (III)). The quantum chemical modeling of the axial parameter of magnetic anisotropy in the zero field (D) is performed for the synthesized compounds in the framework of the SA-CASSCF+NEVPT2 method. The complexes are shown to be characterized by three-axis magnetic anisotropy close to the light magnetization plane with positive D. The axial parameter of magnetic anisotropy (Dexp = 8.79 cm–1) determined by the approximation of the magnetometry data on complex [NiL2(NCS)2] ⋅ 0,5CH3OH ⋅ 1,5H2O is consistent with the calculated value (Dcalc = 11.5 cm–1).

Full Text

Restricted Access

About the authors

M. V. Melikhov

Southern Federal University

Email: yptupolova@sfedu.ru
Russian Federation, Rostov-on-Don

D. V. Korchagin

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: korden@icp.ac.ru
Russian Federation, Chernogolovka, Moscow oblast

Yu. P. Tupolova

Southern Federal University

Email: yptupolova@sfedu.ru
Russian Federation, Rostov-on-Don

L. D. Popov

Southern Federal University

Email: yptupolova@sfedu.ru
Russian Federation, Rostov-on-Don

V. A. Chetverikova

Southern Federal University

Email: yptupolova@sfedu.ru
Russian Federation, Rostov-on-Don

V. V. Tkachev

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: korden@icp.ac.ru
Russian Federation, Chernogolovka, Moscow oblast

A. N. Utenyshev

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: korden@icp.ac.ru
Russian Federation, Chernogolovka, Moscow oblast

N. N. Efimov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: korden@icp.ac.ru
Russian Federation, Moscow

I. N. Shcherbakov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: yptupolova@sfedu.ru
Russian Federation, Moscow

S. M. Aldoshin

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: yptupolova@sfedu.ru
Russian Federation, Chernogolovka, Moscow oblast

References

  1. Troiani F., Affronte M. // Chem. Soc. Rev. 2011. V. 40. № 6. P. 3119.
  2. Stamp P.C., Gaita-Arino A. // J. Mater. Chem. 2009. V. 19. № 12. P. 1718.
  3. Timco G.A., Faust T.B., Tuna F. et al. // Chem. Soc. Rev. 2011. V. 40. № 6. P. 3067.
  4. Sanvito S. // Chem. Soc. Rev. 2011. V. 40. № 6. P. 3336.
  5. Novikov V.V., Nelyubina Yu.V. // Russ. Chem. Rev. 2021. vol. 90. no. 10. p. 1330.
  6. Neese F., Pantazisa D.A. // Faraday Discuss. 2011. V. 148. P. 229.
  7. Boca R. // Coord. Chem. Rev. 2004. V. 248. № 9–10. P. 757.
  8. Ganyushin D., Neese F. // J. Chem. Phys. 2006. V. 125. № 2. P. 024103.
  9. Cirera J., Ruiz E., Alvarez S. et at. // Chem. Eur. J. 2009. V. 15. № 16. P. 4078.
  10. Sarkar A., Dey S., Rajaraman G. // Chem. Eur. J. 2020. V. 26. № 62. P. 14036.
  11. Craig G. A., Murrie M. // Chem. Soc. Rev. 2015. № 44. P. 2135.
  12. Bar A.K., Pichon C., Sutter J.-P. // Coord. Chem. Rev. 2016. V. 308. P. 346.
  13. Tupolova Y.P., Lebedev V. E., Shcherbakov I.N. // New J. Chem. 2023. V. 47. № 22. P. 10484.
  14. Tupolova Y.P., Korchagin D.V., Andreeva A.S. et al. // Magnetochemistry. 2022. V. 8. № 11. P. 153.
  15. Popov L.D., Morozov A.N., Shcherbako I.N. et al. // Russ. Chem. Rev. 2009. vol. 78. no. 7. p. 643.
  16. Nikolaevskaya E.N., Druzhkov N.O., Syroeshkin M.A. et al. // Coord. Chem. Rev. 2020. V. 417. P. 213353.
  17. Tupolova Yu.P., Shcherbakov I.N., Korchagin D.V. et al. // J. Phys. Chem. C. 2020. V. 124. № 47. P. 25957.
  18. Tupolova Y.P., Lebedev V.E., Korchagin D.V. et al. // New J. Chem. 2023. V. 47. № 22. P. 10884.
  19. Tupolova Y.P., Shcherbakov I.N., Popov L.D. et al. // Dalton Trans. 2019. V. 48. 6960.
  20. Дзиомко В.М., Красавин И.А., Мирошкина Н.И. // Методы получения химический реактивов и препаратов. 1965. № 12. С. 50.
  21. Kosolapoff G.M., Roy C.H. // J. Org. Chem. 1961. V. 26. P. 1895.
  22. Tupolova Y.P., Korchagin D.V., Lebedev V.E. et al. // Russ. J. Coord. Chem. 2022. V. 48. Р. 362. https://doi.org/10.31857/S0132344X22060068
  23. CrysAlisPro. Version 1.171.38.41. Rigaku Oxford Diffraction, 2015. https://www.rigaku.com/en/products/smc/crysalis
  24. SHELXTL. Version 6.14. Madison (WI, USA): Bruker AXS, 2000.
  25. Roos B.O., Taylor P. R., Sigbahn P. E.M. // Chem. Phys. 1980. V. 48. № 2. P. 157.
  26. Per S., Anders H., Björn R., Bernard L. // Phys. Scripta. 1980. V. 21. № 3–4. P. 323.
  27. Siegbahn P.E.M., Almlöf J., Heiberg A. et al. // J. Chem. Phys. 1981. V. 74. № 4. P. 2384–2396.
  28. Angeli C., Cimiraglia R., Evangelisti S. et al. // J. Chem. Phys. 2001. V. 114. № 23. P. 10252.
  29. Angeli C., Cimiraglia R., Malrieu J.-P. // Chem. Phys. Lett. 2001. V. 350. № 3. P. 297.
  30. Angeli C., Cimiraglia R. // Theor. Chem. Acc. 2002. V. 107. № 5. P. 313.
  31. Angeli C., Cimiraglia R., Malrieu J.-P. // J. Chem. Phys. 2002. V. 117. № 20. P. 9138.
  32. Hess B.A. // Phys. Rev. A. 1986. № 33. № 6. P. 3742.
  33. Pantazis D.A., Chen X.Y., Landis C.R. et al. // J. Chem. Theory Comput. 2008. V. 4. P. 908.
  34. Schafer A., Huber C., Ahlrichs R. // J. Chem. Phys. 1994. V. 100. № 8. P. 5829.
  35. Schafer A., Horn H., Ahlrichs R. // J. Chem. Phys. 1992. V. 97. № 4. P. 2571.
  36. Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. V. 7. № 18. P. 3297.
  37. Neese F. // J. Comput. Chem. 2003. V. 24. № 14. P. 1740.
  38. Neese F. // WIREs Comput. Mol. Sci. 2018. V. 8. № 1. Art. e1327.
  39. Atanasov M., Ganyushin D., Sivalingam K. et al. // Molecular Electronic Structures of Transition Metal Complexes II / Eds. Mingos D. M.P., Day P., Dahl J. P. Berlin, Heidelberg: Springer, 2012. P. 149.
  40. Singh S.K., Eng J., Atanasov M. et al. // Coord. Chem. Rev. 2017. V. 344. P. 2.
  41. Alvarez S., Alemany P., Casanova D. J, et al. // Coord. Chem. Rev. 2005. V. 249. P. 1693.
  42. Gomez-Coca S., Cremades E., Aliaga-Alcalde N. et al. // J. Am. Chem. Soc. 2013. V. 135. № 18. P. 7010.
  43. Gómez-Coca S., Aravena D., Morales R. et al. // Coord. Chem. Rev. 2015. V. 289–290. P. 379.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Scheme 1.

Download (151KB)
3. Scheme 2.

Download (154KB)
4. Fig. 1. Molecular structure of complex I (without DMSO molecule).

Download (210KB)
5. Fig. 2. Molecular structure of complex II.

Download (207KB)
6. Fig. 3. Molecular structure of complex III.

Download (270KB)
7. Fig. 4. Polyhedra of compounds I–III.

Download (145KB)
8. Fig. 5. Fragment of the crystal packing of complex I (without hydrogen atoms).

Download (153KB)
9. Fig. 6. Fragment of the crystal packing of complex II (without hydrogen atoms).

Download (168KB)
10. Fig. 7. Fragment of the crystal packing of complex III, the dotted lines indicate the intermolecular hydrogen bonds formed by the crystallization water molecule (a); intermolecular hydrogen bonds between the water molecule and the molecules of complex III (b).

Download (180KB)
11. Fig. 8. Temperature dependence of χMT for III measured at H = 0.1 T (hollow circles). Insert: magnetization versus field for I measured at T = 1.8 and 5 K. Theoretical curves (solid lines) were calculated with the parameters: E = 0.08 cm⁻¹, gX = gY = 2.20, gZ = 2.09, χТНП = 10 × 10⁻⁴ cm³ K mol⁻¹.

Download (190KB)
12. Fig. 9. Splitting of the d-AO of the nickel ion in complex III (calculated according to the NTPL. The coordinate axes are oriented as follows: the z axis is directed perpendicular to the plane of the molecule, the x and y axes are directed toward the nitrogen atoms).

Download (107KB)

Copyright (c) 2024 Российская академия наук