Complexes of Hexacoordinated Ni(II) Based on Diacetyl bis-hetarylhydrazones: Structures and Magnetic Properties
- Authors: Melikhov M.V.1, Korchagin D.V.2, Tupolova Y.P.1, Popov L.D.1, Chetverikova V.A.1, Tkachev V.V.2, Utenyshev A.N.2, Efimov N.N.3, Shcherbakov I.N.3, Aldoshin S.M.2
-
Affiliations:
- Southern Federal University
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- Issue: Vol 50, No 11 (2024)
- Pages: 739-752
- Section: Articles
- URL: https://rjonco.com/0132-344X/article/view/667647
- DOI: https://doi.org/10.31857/S0132344X24110014
- EDN: https://elibrary.ru/LNLALO
- ID: 667647
Cite item
Abstract
Mononuclear nickel complexes [NiL1(NCS)2] ⋅ 2DMSO (I), [NiL1(NCS)2] ⋅ DMF (II), and [NiL2(NCS)2] ⋅ 0,5CH3OH ⋅ 1,5H2O (III) with the distorted octahedral coordination node, where L1 and L2 are the tetradentate ligand systems derived from the products of the condensation of diacetyl with 2-hydrazinoquinoline and 2-hydrazino-4,6-dimethylpyrimidine, respectively, are synthesized. The structures of the compounds are determined by IR pectroscopy and XRD (CIF files ССDС nos. 2219793 (I), 2142035 (II), and 2219794 (III)). The quantum chemical modeling of the axial parameter of magnetic anisotropy in the zero field (D) is performed for the synthesized compounds in the framework of the SA-CASSCF+NEVPT2 method. The complexes are shown to be characterized by three-axis magnetic anisotropy close to the light magnetization plane with positive D. The axial parameter of magnetic anisotropy (Dexp = 8.79 cm–1) determined by the approximation of the magnetometry data on complex [NiL2(NCS)2] ⋅ 0,5CH3OH ⋅ 1,5H2O is consistent with the calculated value (Dcalc = 11.5 cm–1).
Full Text

About the authors
M. V. Melikhov
Southern Federal University
Email: yptupolova@sfedu.ru
Russian Federation, Rostov-on-Don
D. V. Korchagin
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Author for correspondence.
Email: korden@icp.ac.ru
Russian Federation, Chernogolovka, Moscow oblast
Yu. P. Tupolova
Southern Federal University
Email: yptupolova@sfedu.ru
Russian Federation, Rostov-on-Don
L. D. Popov
Southern Federal University
Email: yptupolova@sfedu.ru
Russian Federation, Rostov-on-Don
V. A. Chetverikova
Southern Federal University
Email: yptupolova@sfedu.ru
Russian Federation, Rostov-on-Don
V. V. Tkachev
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Email: korden@icp.ac.ru
Russian Federation, Chernogolovka, Moscow oblast
A. N. Utenyshev
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Email: korden@icp.ac.ru
Russian Federation, Chernogolovka, Moscow oblast
N. N. Efimov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: korden@icp.ac.ru
Russian Federation, Moscow
I. N. Shcherbakov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: yptupolova@sfedu.ru
Russian Federation, Moscow
S. M. Aldoshin
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Email: yptupolova@sfedu.ru
Russian Federation, Chernogolovka, Moscow oblast
References
- Troiani F., Affronte M. // Chem. Soc. Rev. 2011. V. 40. № 6. P. 3119.
- Stamp P.C., Gaita-Arino A. // J. Mater. Chem. 2009. V. 19. № 12. P. 1718.
- Timco G.A., Faust T.B., Tuna F. et al. // Chem. Soc. Rev. 2011. V. 40. № 6. P. 3067.
- Sanvito S. // Chem. Soc. Rev. 2011. V. 40. № 6. P. 3336.
- Novikov V.V., Nelyubina Yu.V. // Russ. Chem. Rev. 2021. vol. 90. no. 10. p. 1330.
- Neese F., Pantazisa D.A. // Faraday Discuss. 2011. V. 148. P. 229.
- Boca R. // Coord. Chem. Rev. 2004. V. 248. № 9–10. P. 757.
- Ganyushin D., Neese F. // J. Chem. Phys. 2006. V. 125. № 2. P. 024103.
- Cirera J., Ruiz E., Alvarez S. et at. // Chem. Eur. J. 2009. V. 15. № 16. P. 4078.
- Sarkar A., Dey S., Rajaraman G. // Chem. Eur. J. 2020. V. 26. № 62. P. 14036.
- Craig G. A., Murrie M. // Chem. Soc. Rev. 2015. № 44. P. 2135.
- Bar A.K., Pichon C., Sutter J.-P. // Coord. Chem. Rev. 2016. V. 308. P. 346.
- Tupolova Y.P., Lebedev V. E., Shcherbakov I.N. // New J. Chem. 2023. V. 47. № 22. P. 10484.
- Tupolova Y.P., Korchagin D.V., Andreeva A.S. et al. // Magnetochemistry. 2022. V. 8. № 11. P. 153.
- Popov L.D., Morozov A.N., Shcherbako I.N. et al. // Russ. Chem. Rev. 2009. vol. 78. no. 7. p. 643.
- Nikolaevskaya E.N., Druzhkov N.O., Syroeshkin M.A. et al. // Coord. Chem. Rev. 2020. V. 417. P. 213353.
- Tupolova Yu.P., Shcherbakov I.N., Korchagin D.V. et al. // J. Phys. Chem. C. 2020. V. 124. № 47. P. 25957.
- Tupolova Y.P., Lebedev V.E., Korchagin D.V. et al. // New J. Chem. 2023. V. 47. № 22. P. 10884.
- Tupolova Y.P., Shcherbakov I.N., Popov L.D. et al. // Dalton Trans. 2019. V. 48. 6960.
- Дзиомко В.М., Красавин И.А., Мирошкина Н.И. // Методы получения химический реактивов и препаратов. 1965. № 12. С. 50.
- Kosolapoff G.M., Roy C.H. // J. Org. Chem. 1961. V. 26. P. 1895.
- Tupolova Y.P., Korchagin D.V., Lebedev V.E. et al. // Russ. J. Coord. Chem. 2022. V. 48. Р. 362. https://doi.org/10.31857/S0132344X22060068
- CrysAlisPro. Version 1.171.38.41. Rigaku Oxford Diffraction, 2015. https://www.rigaku.com/en/products/smc/crysalis
- SHELXTL. Version 6.14. Madison (WI, USA): Bruker AXS, 2000.
- Roos B.O., Taylor P. R., Sigbahn P. E.M. // Chem. Phys. 1980. V. 48. № 2. P. 157.
- Per S., Anders H., Björn R., Bernard L. // Phys. Scripta. 1980. V. 21. № 3–4. P. 323.
- Siegbahn P.E.M., Almlöf J., Heiberg A. et al. // J. Chem. Phys. 1981. V. 74. № 4. P. 2384–2396.
- Angeli C., Cimiraglia R., Evangelisti S. et al. // J. Chem. Phys. 2001. V. 114. № 23. P. 10252.
- Angeli C., Cimiraglia R., Malrieu J.-P. // Chem. Phys. Lett. 2001. V. 350. № 3. P. 297.
- Angeli C., Cimiraglia R. // Theor. Chem. Acc. 2002. V. 107. № 5. P. 313.
- Angeli C., Cimiraglia R., Malrieu J.-P. // J. Chem. Phys. 2002. V. 117. № 20. P. 9138.
- Hess B.A. // Phys. Rev. A. 1986. № 33. № 6. P. 3742.
- Pantazis D.A., Chen X.Y., Landis C.R. et al. // J. Chem. Theory Comput. 2008. V. 4. P. 908.
- Schafer A., Huber C., Ahlrichs R. // J. Chem. Phys. 1994. V. 100. № 8. P. 5829.
- Schafer A., Horn H., Ahlrichs R. // J. Chem. Phys. 1992. V. 97. № 4. P. 2571.
- Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. V. 7. № 18. P. 3297.
- Neese F. // J. Comput. Chem. 2003. V. 24. № 14. P. 1740.
- Neese F. // WIREs Comput. Mol. Sci. 2018. V. 8. № 1. Art. e1327.
- Atanasov M., Ganyushin D., Sivalingam K. et al. // Molecular Electronic Structures of Transition Metal Complexes II / Eds. Mingos D. M.P., Day P., Dahl J. P. Berlin, Heidelberg: Springer, 2012. P. 149.
- Singh S.K., Eng J., Atanasov M. et al. // Coord. Chem. Rev. 2017. V. 344. P. 2.
- Alvarez S., Alemany P., Casanova D. J, et al. // Coord. Chem. Rev. 2005. V. 249. P. 1693.
- Gomez-Coca S., Cremades E., Aliaga-Alcalde N. et al. // J. Am. Chem. Soc. 2013. V. 135. № 18. P. 7010.
- Gómez-Coca S., Aravena D., Morales R. et al. // Coord. Chem. Rev. 2015. V. 289–290. P. 379.
Supplementary files
