Complexes of Hexacoordinated Ni(II) Based on Diacetyl bis-hetarylhydrazones: Structures and Magnetic Properties
- Авторлар: Melikhov M.V.1, Korchagin D.V.2, Tupolova Y.P.1, Popov L.D.1, Chetverikova V.A.1, Tkachev V.V.2, Utenyshev A.N.2, Efimov N.N.3, Shcherbakov I.N.3, Aldoshin S.M.2
-
Мекемелер:
- Southern Federal University
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- Шығарылым: Том 50, № 11 (2024)
- Беттер: 739-752
- Бөлім: Articles
- URL: https://rjonco.com/0132-344X/article/view/667647
- DOI: https://doi.org/10.31857/S0132344X24110014
- EDN: https://elibrary.ru/LNLALO
- ID: 667647
Дәйексөз келтіру
Аннотация
Mononuclear nickel complexes [NiL1(NCS)2] ⋅ 2DMSO (I), [NiL1(NCS)2] ⋅ DMF (II), and [NiL2(NCS)2] ⋅ 0,5CH3OH ⋅ 1,5H2O (III) with the distorted octahedral coordination node, where L1 and L2 are the tetradentate ligand systems derived from the products of the condensation of diacetyl with 2-hydrazinoquinoline and 2-hydrazino-4,6-dimethylpyrimidine, respectively, are synthesized. The structures of the compounds are determined by IR pectroscopy and XRD (CIF files ССDС nos. 2219793 (I), 2142035 (II), and 2219794 (III)). The quantum chemical modeling of the axial parameter of magnetic anisotropy in the zero field (D) is performed for the synthesized compounds in the framework of the SA-CASSCF+NEVPT2 method. The complexes are shown to be characterized by three-axis magnetic anisotropy close to the light magnetization plane with positive D. The axial parameter of magnetic anisotropy (Dexp = 8.79 cm–1) determined by the approximation of the magnetometry data on complex [NiL2(NCS)2] ⋅ 0,5CH3OH ⋅ 1,5H2O is consistent with the calculated value (Dcalc = 11.5 cm–1).
Толық мәтін

Авторлар туралы
M. Melikhov
Southern Federal University
Email: yptupolova@sfedu.ru
Ресей, Rostov-on-Don
D. Korchagin
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: korden@icp.ac.ru
Ресей, Chernogolovka, Moscow oblast
Yu. Tupolova
Southern Federal University
Email: yptupolova@sfedu.ru
Ресей, Rostov-on-Don
L. Popov
Southern Federal University
Email: yptupolova@sfedu.ru
Ресей, Rostov-on-Don
V. Chetverikova
Southern Federal University
Email: yptupolova@sfedu.ru
Ресей, Rostov-on-Don
V. Tkachev
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Email: korden@icp.ac.ru
Ресей, Chernogolovka, Moscow oblast
A. Utenyshev
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Email: korden@icp.ac.ru
Ресей, Chernogolovka, Moscow oblast
N. Efimov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: korden@icp.ac.ru
Ресей, Moscow
I. Shcherbakov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: yptupolova@sfedu.ru
Ресей, Moscow
S. Aldoshin
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Email: yptupolova@sfedu.ru
Ресей, Chernogolovka, Moscow oblast
Әдебиет тізімі
- Troiani F., Affronte M. // Chem. Soc. Rev. 2011. V. 40. № 6. P. 3119.
- Stamp P.C., Gaita-Arino A. // J. Mater. Chem. 2009. V. 19. № 12. P. 1718.
- Timco G.A., Faust T.B., Tuna F. et al. // Chem. Soc. Rev. 2011. V. 40. № 6. P. 3067.
- Sanvito S. // Chem. Soc. Rev. 2011. V. 40. № 6. P. 3336.
- Novikov V.V., Nelyubina Yu.V. // Russ. Chem. Rev. 2021. vol. 90. no. 10. p. 1330.
- Neese F., Pantazisa D.A. // Faraday Discuss. 2011. V. 148. P. 229.
- Boca R. // Coord. Chem. Rev. 2004. V. 248. № 9–10. P. 757.
- Ganyushin D., Neese F. // J. Chem. Phys. 2006. V. 125. № 2. P. 024103.
- Cirera J., Ruiz E., Alvarez S. et at. // Chem. Eur. J. 2009. V. 15. № 16. P. 4078.
- Sarkar A., Dey S., Rajaraman G. // Chem. Eur. J. 2020. V. 26. № 62. P. 14036.
- Craig G. A., Murrie M. // Chem. Soc. Rev. 2015. № 44. P. 2135.
- Bar A.K., Pichon C., Sutter J.-P. // Coord. Chem. Rev. 2016. V. 308. P. 346.
- Tupolova Y.P., Lebedev V. E., Shcherbakov I.N. // New J. Chem. 2023. V. 47. № 22. P. 10484.
- Tupolova Y.P., Korchagin D.V., Andreeva A.S. et al. // Magnetochemistry. 2022. V. 8. № 11. P. 153.
- Popov L.D., Morozov A.N., Shcherbako I.N. et al. // Russ. Chem. Rev. 2009. vol. 78. no. 7. p. 643.
- Nikolaevskaya E.N., Druzhkov N.O., Syroeshkin M.A. et al. // Coord. Chem. Rev. 2020. V. 417. P. 213353.
- Tupolova Yu.P., Shcherbakov I.N., Korchagin D.V. et al. // J. Phys. Chem. C. 2020. V. 124. № 47. P. 25957.
- Tupolova Y.P., Lebedev V.E., Korchagin D.V. et al. // New J. Chem. 2023. V. 47. № 22. P. 10884.
- Tupolova Y.P., Shcherbakov I.N., Popov L.D. et al. // Dalton Trans. 2019. V. 48. 6960.
- Дзиомко В.М., Красавин И.А., Мирошкина Н.И. // Методы получения химический реактивов и препаратов. 1965. № 12. С. 50.
- Kosolapoff G.M., Roy C.H. // J. Org. Chem. 1961. V. 26. P. 1895.
- Tupolova Y.P., Korchagin D.V., Lebedev V.E. et al. // Russ. J. Coord. Chem. 2022. V. 48. Р. 362. https://doi.org/10.31857/S0132344X22060068
- CrysAlisPro. Version 1.171.38.41. Rigaku Oxford Diffraction, 2015. https://www.rigaku.com/en/products/smc/crysalis
- SHELXTL. Version 6.14. Madison (WI, USA): Bruker AXS, 2000.
- Roos B.O., Taylor P. R., Sigbahn P. E.M. // Chem. Phys. 1980. V. 48. № 2. P. 157.
- Per S., Anders H., Björn R., Bernard L. // Phys. Scripta. 1980. V. 21. № 3–4. P. 323.
- Siegbahn P.E.M., Almlöf J., Heiberg A. et al. // J. Chem. Phys. 1981. V. 74. № 4. P. 2384–2396.
- Angeli C., Cimiraglia R., Evangelisti S. et al. // J. Chem. Phys. 2001. V. 114. № 23. P. 10252.
- Angeli C., Cimiraglia R., Malrieu J.-P. // Chem. Phys. Lett. 2001. V. 350. № 3. P. 297.
- Angeli C., Cimiraglia R. // Theor. Chem. Acc. 2002. V. 107. № 5. P. 313.
- Angeli C., Cimiraglia R., Malrieu J.-P. // J. Chem. Phys. 2002. V. 117. № 20. P. 9138.
- Hess B.A. // Phys. Rev. A. 1986. № 33. № 6. P. 3742.
- Pantazis D.A., Chen X.Y., Landis C.R. et al. // J. Chem. Theory Comput. 2008. V. 4. P. 908.
- Schafer A., Huber C., Ahlrichs R. // J. Chem. Phys. 1994. V. 100. № 8. P. 5829.
- Schafer A., Horn H., Ahlrichs R. // J. Chem. Phys. 1992. V. 97. № 4. P. 2571.
- Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. V. 7. № 18. P. 3297.
- Neese F. // J. Comput. Chem. 2003. V. 24. № 14. P. 1740.
- Neese F. // WIREs Comput. Mol. Sci. 2018. V. 8. № 1. Art. e1327.
- Atanasov M., Ganyushin D., Sivalingam K. et al. // Molecular Electronic Structures of Transition Metal Complexes II / Eds. Mingos D. M.P., Day P., Dahl J. P. Berlin, Heidelberg: Springer, 2012. P. 149.
- Singh S.K., Eng J., Atanasov M. et al. // Coord. Chem. Rev. 2017. V. 344. P. 2.
- Alvarez S., Alemany P., Casanova D. J, et al. // Coord. Chem. Rev. 2005. V. 249. P. 1693.
- Gomez-Coca S., Cremades E., Aliaga-Alcalde N. et al. // J. Am. Chem. Soc. 2013. V. 135. № 18. P. 7010.
- Gómez-Coca S., Aravena D., Morales R. et al. // Coord. Chem. Rev. 2015. V. 289–290. P. 379.
Қосымша файлдар
