Complexes R₂Sn(IV)L with Tridentate O,N,O΄-Donor Schiff Bases: Photophysical Properties and Biological Activity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

New tin(IV) complexes (Ln)SnR2 (R = n-Bu (I, II), t-Bu (IIIV), and Ph (VI)) with O,N,O΄-donor Schiff bases are synthesized. The molecular structures of compounds I and IV in the crystalline state are determined by XRD (CIF files CCDC nos. 2309864 (I) and 2309422 (IV)). The photophysical properties of the complexes are studied in comparison with the previously synthesized compounds containing phenyl or ethyl hydrocarbon groups at the tin atom. All compounds luminesce in chloroform: the emission bands are observed in the range from 580 to 638 nm. Both the groups at the tin atom and nature of the substituents in Schiff bases significantly affect the relative quantum yield. The anti/prooxidant activity of (Ln)SnR2 in the reactions with the ABTS (2,2΄-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)) radical cation and superoxide radical anion, in the oxidative DNA damage, and during lipid peroxidation in vitro is studied. A weak antibacterial activity against the bacterial strains Staphylococcus aureus ANCC 6538 and E. faecium ATCC 3576 are observed for some compounds. The in vitro antiproliferative properties for a number of the complexes are studied for the HTC-116 and А-549 cancer cell lines. The coordination of the organometallic fragment with the O,N,O΄-tridentate ligands is found to induce a pronounced decrease in the cytotoxicity of the complexes.

Full Text

Restricted Access

About the authors

D. A. Burmistrova

Astrakhan State Technical University

Email: ivsmolyaninov@gmail.com
Russian Federation, Astrakhan

N. P. Pomortseva

Astrakhan State Technical University

Email: ivsmolyaninov@gmail.com
Russian Federation, Astrakhan

K. D. Pashaeva

Astrakhan State Technical University

Email: ivsmolyaninov@gmail.com
Russian Federation, Astrakhan

M. P. Polovinkina

Astrakhan State Technical University

Email: ivsmolyaninov@gmail.com
Russian Federation, Astrakhan

N. R. Al’myasheva

Gause Institute of New Antibiotics, Russian Academy of Medical Sciences

Email: ivsmolyaninov@gmail.com
Russian Federation, Moscow

F. M. Dolgushin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: ivsmolyaninov@gmail.com
Russian Federation, Moscow

E. D. Tselukovskaya

National Research University Higher School of Economics

Email: ivsmolyaninov@gmail.com
Russian Federation, Moscow

I. V. Anan’ev

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: ivsmolyaninov@gmail.com
Russian Federation, Moscow

O. P. Demidov

North Caucasian Federal University

Email: ivsmolyaninov@gmail.com
Russian Federation, Stavropol

A. I. Poddel’skii

Institute of Inorganic Chemistry, University of Tubingen

Email: ivsmolyaninov@gmail.com
Germany, Tubingen

N. T. Berberova

Astrakhan State Technical University

Email: ivsmolyaninov@gmail.com
Russian Federation, Astrakhan

I. L. Eremenko

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: ivsmolyaninov@gmail.com
Russian Federation, Moscow

I. V. Smolyaninov

Astrakhan State Technical University

Author for correspondence.
Email: ivsmolyaninov@gmail.com
Russian Federation, Astrakhan

References

  1. Baryshnikova S.V., Poddel’sky A.I., Bellan E.V. et al. // Inorg. Chem. 2020. V. 59. № 10. P. 6774. https://doi.org/10.1021/acs.inorgchem.9b03757
  2. Piskunov A.V., Trofimova O.Yu., Piskunova M.S. et al. // Russ. J. Coord. Chem. 2018. V. 44. P. 138. https://doi.org/10.1134/S1070328418020082
  3. Baryshnikova S.V., Bellan E.V., Poddel’skii A.I. et al. // Dokl. Chem. 2017. V. 474. P. 101. https://doi.org/10.1134/S0012500817050019
  4. Baryshnikova S.V., Bellan E.V., Poddel’sky A.I. et al. // Eur. J. Inorg. Chem. 2016. P. 5230. https://doi.org/10.1002/ejic.201600885
  5. Ilyakina E.V., Poddel’sky A.I., Fukin G.K. et al. // Inorg. Chem. 2013. V. 52. P. 5284. https://doi.org/10.1021/ic400713p
  6. Piskunov A.V., Trofimova O.Yu., Fukin G.K. et al. // Dalton Trans. 2012. V. 41. P. 10970–10979. https://doi.org/10.1039/C2DT30656E
  7. Chegerev M.G., Piskunov A.V. // Russ. J. Coord. Chem. 2018. V. 44. № 4. Р. 258. https://doi.org/10.1134/S1070328418040036
  8. Piskunov A.V., Piskunova M.S., Chegerev M.G. // Russ. Chem. Bull. 2014. V. 63. № 4. P. 912. https://doi.org/10.1007/s11172-014-0527-5
  9. Piskunov A.V., Chegerev M.G., Fukin G.K. // J. Organomet. Chem. 2016. V. 803. P. 51. https://doi.org/10.1016/j.jorganchem.2015.12.012
  10. Chegerev M.G., Piskunov A.V., Starikova A.A. et al. // Eur. J. Inorg. Chem. 2018. P. 1087. https://doi.org/10.1002/ejic.201701361
  11. Klimashevskaya A.V., Arsenyeva K.V., Maleeva A.V. et al. // Eur. J. Inorg. Chem. 2023. V. 26. e202300540. https://doi.org/10.1002/ejic.202300540
  12. Banti C.N., Hadjikakoua S.K., Sismanoglu T. et al. // J. Inorg. Biochem. 2019. V. 194. P. 114. https://doi.org/10.1016/j.jinorgbio.2019.02.003
  13. Zou T., Lum C.T., Lok C.-N. et al. // Chem. Soc. Rev. 2015. V. 44. P. 8786. https://doi.org/10.1039/C5CS00132C
  14. Devi J., Pachwania S., Kumar D. et al. // Res. Chem. Intermed. 2021. V. 48. P. 267. https://doi.org/10.1007/s11164-021-04557-w
  15. Yusof E.N.M., Ravoof T.B.S.A., Page A.J. // Polyhedron. 2021. V. 198. P. 115069. https://doi.org/10.1016/j.poly.2021.115069
  16. Krylova I.V., Labutskaya L.D., Markova M.O. et al. // New J. Chem. 2023. V. 47. P. 11890. https://doi.org/10.1039/d3nj01993d
  17. Sánchez-Vergara M.E., Hamui L., Gómez E. et al. // Polymers. 2021. V. 13. P. 1023. https://doi.org/10.3390/polym13071023
  18. Sánchez-Vergara M. E., Gómez E., Dircio E. T. et al. // Int. J. Mol. Sci. 2023. V. 24. P. 5255. https://doi.org/10.3390/ijms24065255
  19. Cantón-Díaz A.M., Muñoz-Flores B.M., Moggio I. et al. // New J. Chem. 2018. V. 42. P. 14586. https://doi.org/10.1039/C8NJ02998A
  20. Akbulatov A.F., Akyeva A.Y., Shangin P.G. et al. // Membranes. 2023. V. 13. P. 439. https://doi.org/10.3390/membranes13040439
  21. Jiménez-Pérez V.M., García-López M.C., Muñoz-Flores B.M. et al. // J. Mater. Chem. B. 2015. V. 3. P. 5731. https://doi.org/10.1039/C5TB00717H
  22. López-Espejel M., Gómez-Treviño A., Muñoz-Flores B.M. et al. // J. Mater. Chem. B. 2021. V. 9. P. 7698. https://doi.org/10.1039/d1tb01405f
  23. Sahu G., Patra S.A., Pattanayak P.D. et al. // Chem. Commun. 2023. V. 59. P. 10188. https://doi.org/10.1039/D3CC01953E
  24. Khan H.Y., Maurya S.K., Siddique H.R. et al. // ACS Omega. 2020. V. 5. P. 15218. https://doi.org/10.1021/acsomega.0c01206
  25. Khatkar P., Asija S. // Phosphorus Sulfur Silicon Relat. Elem. 2017. V. 192. P. 446. https://doi.org/10.1080/10426507.2016.1248762
  26. Jiang W., Qin Q., Xiao X. et al. // J. Inorg. Biochem. 2022. V. 232. P. 111808. https://doi.org/10.1016/j.jinorgbio.2022.111808
  27. Antonenko T.A., Shpakovsky D.B., Vorobyov M.A., et al. // Appl. Organometal. Chem. 2018. V. 32. Art. e4381. https://doi.org/10.1002/aoc.4381
  28. Nikitin E., Mironova E., Shpakovsky D. et al. // Molecules. 2022. V. 27. P. 8359. https://doi.org/10.3390/molecules27238359
  29. Antonenko A., Gracheva Y.A., Shpakovsky D. et al. // Int. J. Mol. Sci. 2023. V. 24. P. 2024. https://doi.org/10.3390/ijms24032024
  30. Smolyaninov I.V., Burmistrova D.A., Pomortseva et al. // Russ. J. Coord. Chem. 2023. V. 49. P. 124. https://doi.org/10.1134/S1070328423700446
  31. Smolyaninov I.V., Poddel’sky A.I., Burmistrova D.A. et al. // Molecules. 2022. V. 27. P. 8216. https://doi.org/10.3390/molecules27238216
  32. Gordon A.J., Ford R.A., The chemistґs companion. New York: A Wiley interscience publication, 1972. 541 p.
  33. Lakowicz J.R. Principles of Fluorescence Spectroscopy. Third Edition. New York: Springer, 2006. 673 p.
  34. Re R., Pellergrini N., Proteggente A. et al. // Free Radic. Biol. Med. 1999. V. 26. P. 1231. https://doi.org/10.1016/S0891-5849(98)00315-3
  35. Sadeer N.B., Montesano D., Albrizio S. et al. // Antioxidants. 2020. V. 9. P. 709. https://doi.org/10.3390/antiox9080709
  36. Stroev E.N., Makarova V.G. Praktikum po biologicheskoi khimii (Laboratory Works in Biological Chemistry). Moscow: Vysshaya shkola, 1986.
  37. Zhao F., Liu Z.-Q. // J. Phys. Org. Chem. 2009. V. 22. P. 791. https://doi.org/10.1002/poc.1517
  38. CLSI, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Approved Standards, 10th ed. CLSI document M07-A10, Wayne, PA, Clinical and Laboratory Standards Institute, 2015.
  39. CrysAlisPro. Version 1.171.38.41. Rigaku Oxford Diffraction, 2015.
  40. Sheldrick G.M. SADABS. Madison (WI, USA): Bruker AXS Inc., 1997.
  41. Sheldrick G.M. // Acta Crystallogr. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  42. Frisch M.J., Trucks G.W., Schlegel H.B. Gaussian 09. Revision D.01. Wallingford (CT, USA): Gaussian, Inc., 2016.
  43. Perdew J., Ernzerhof M., Burke K. // J. Chem. Phys. 1996. V. 105. P. 9982. https://doi.org/10.1063/1.472933
  44. Carlo A., Barone V. // J. Chem. Phys. 1999. V. 110. P. 6158. https://doi.org/10.1063/1.478522
  45. Grimme S., Ehrlich S., Goerigk L. // J. Comput. Chem. 2011. V. 32. P. 1456. https://doi.org/10.1002/jcc.21759
  46. Tomasi J., Mennucci B., Cammi R. // Chem. Rev. 2005. V. 105. P. 2999. https://doi.org/10.1021/cr9904009
  47. Basu S., Masharing C., Das B. // Heteroat. Chem. 2012. V. 23. P. 457. https://doi.org/10.1002/hc.21037
  48. Basu S., Gupta G., Das B. et al. // J. Organomet. Chem. 2010. V. 695. P. 2098. https://doi.org/10.1016/j.jorganchem.2010.05.026
  49. Farfan N., Mancilla T., Santillan R. et al. // J. Organomet. Chem. 2004. V. 689. P. 3481. https://doi.org/10.1016/j.jorganchem.2004.07.053
  50. Tan Y.-X., Zhang Zh.-J, Liu Y. et al. // J. Mol. Struct. 2017. V. 1149. P. 874. https://doi.org/10.1016/j.molstruc.2017.08.058
  51. Garcia-Lopez M.C., Munoz-Flores B.M., Jimenez-Perez V.M. et al. // Dyes Pigm. 2014. V. 106. P. 188. https://doi.org/10.1016/j.dyepig.2014.02.021
  52. Beltran H. I., Damian-Zea C., Hernandez-Ortega S. et al. // J. Inorg. Biochem. 2007. V. 101. P. 1070. https://doi.org/10.1016/j.jinorgbio.2007.04.002
  53. Gonzalez-Hernandez A., Barba V. // Inorg. Chim. Acta. 2018. V. 483. P. 284. https://doi.org/10.1016/j.ica.2018.08.026
  54. Vinayak R., Dey D., Ghosh D. et al. // Appl. Organomet. Chem. 2018, V. 32. Art. e4122. https://doi.org/10.1002/aoc.4122
  55. Budnikova Y.H., Dudkina Y.B., Kalinin A.A. et al. // Electrochim. Acta. 2021. V. 368. P. 137578. https://doi.org/10.1016/j.electacta.2020.137578
  56. Smolyaninov I.V., Poddel’sky A.I., Burmistrova D.A. et al. // Int. J. Mol. Sci. 2023. V. 24. № 9. P. 8319. https://doi.org/10.3390/ijms24098319
  57. Petrosyan V.D., Milaeva E.R., Gracheva Yu.A. et al. // Applied Organomet. Chem. 2002. V. 16. P. 655. https://doi.org/10.1002/aoc.360
  58. Antonova N.A., Kolyada M.N., Osipova V.P. et al. // Doklady Chem. 2008. V. 419. P. 62. https://doi.org/10.1134/s0012500808030051
  59. Devi J., Yadav J., Singh N. // Res. Chem. Intermed. 2019. V. 45. P. 3943. https://doi.org/10.1007/s11164-019-03830-60
  60. Devi J., Pachwania S., Kumar D. et al. // Res. Chem. Intermediates. 2022. V. 48. P. 267. https://doi.org/10.1007/s11164-021-04557-w
  61. Devi J., Pachwania S., Yadav J. et al. // Phosphorus, Sulfur Silicon Relat. Elem. 2021. V. 196. P. 119. https://doi.org/10.1080/10426507.2020.1818749.
  62. Devi J., Yadav J. // Anti-Cancer Agents Med. Chem. 2018. V. 18. P. 335. https://doi.org/10.2174/1871520617666171106125114
  63. Banti C.N., Hadjikakou S.K., Sismanoglu T. et al. // J. Inorg. Biochem. 2019. V. 194. P. 114. https://doi.org/10.1016/j.jinorgbio.2019.02.003
  64. Milaeva E.R., Shpakovsky D.B., Gracheva Y.A. et al. // Pure Appl. Chem. 2020. V. 92. № 8. P. 1201. https://doi.org/10.1515/pac-2019-1209
  65. Beltran H. I., Damian-Zea C., Hernández-Ortega S. et al. // J. Inorg. Biochem. 2007. V. 101. P. 1070. https://doi.org/10.1016/j.jinorgbio.2007.04.002
  66. Vinayak D. Dey D. Ghosh D. et al. // Appl. Organometal. Chem. 2017. V. Art. e4122. https://doi.org/10.1002/aoc.4122

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Scheme 1.

Download (198KB)
3. Fig. 1. Molecular structure of the L²SnᵗBu₂ (IV) complex according to X-ray diffraction data. Hydrogen atoms are not shown. Ellipsoids represent 50% probability.

Download (120KB)
4. Fig. 2. Molecular structure of the L¹SnⁿBu₂ (I) complex according to X-ray diffraction data. Hydrogen atoms are not shown. Ellipsoids are 50% probability.

Download (215KB)
5. Fig. 3. Electronic absorption spectra of complexes: I (1), II (2), IV (3), V (4) in CHCl₃ at 293 K (c = 3.0 × 10⁻⁵ mol/l).

Download (78KB)
6. Fig. 4. Fluorescence spectra of complexes: VI (1), I (2), V (3), IV (4) in CHCl₃ at 293 K (c = 5.0 × 10⁻⁶ mol/L).

Download (65KB)
7. Fig. 5. Fluorescence spectra of complexes XI (1), VIII (2), X (3), XIII (4) in CHCl₃ at 293 K (c = 5.0 × 10⁻⁶ mol/L).

Download (62KB)
8. Fig. 6. Isosurfaces of some Kohn–Sham molecular orbitals (value |0.02| a.u.) calculated at the B3LYP/def2TZVP level for compound X.

Download (280KB)
9. Fig. 7. Electronic absorption spectra of tin(IV) complexes: IV (1); IX (2); X (3) (25°C, 3 h, s = 5 × 10⁻⁶ M) at pH 4.

Download (69KB)
10. Fig. 8. Electronic absorption spectra of complex IX at different pH values ​​of the medium (25°C, 3 h, s = 5 × 10⁻⁶ M).

Download (105KB)
11. Fig. 9. Changes in the electronic absorption spectra of complex IX over time at pH 7.0 (25°C, 3 h, s = 5 × 10⁻⁶ M).

Download (106KB)
12. Fig. 10. Changes in the concentration of TBA-AP in Wistar rat liver homogenates in vitro in the presence of I, III, V–XIII during incubation (3, 24, 48 h) (compound concentration 100 µmol; no additives – control; mean values ​​with standard deviations are presented).

Download (132KB)
13. Fig. 11. Change in the absorption of TBA-AP formed as a result of oxidative damage to DNA molecules (2.0 mg ml⁻¹) upon introduction of the AAPG promoter (40 mmol l⁻¹), in the presence of I–XIII (50 µmol), as well as Trolox (control - without added compounds).

Download (68KB)

Copyright (c) 2024 Российская академия наук