Octahedral Halide Clusters of Niobium and Tantalum Bearing the Cluster Core {M6X12}

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Synthesis methods, molecular and electronic structures, and reactivity of the family of the octahedral clusters of niobium and tantalum halides bearing the {M6X12} cluster core are reviewed. Possible fields of the practical use of this class of compounds are considered.

Full Text

Restricted Access

About the authors

M. V. Shamshurin

Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: caesar@niic.nsc.ru
Russian Federation, Novosibirsk

M. N. Sokolov

Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: caesar@niic.nsc.ru
Russian Federation, Novosibirsk

References

  1. Prokopuk N., Shriver D.F. // Adv. Inorg. Chem. 1998. V. 56. P. 1.
  2. Artelt H.M., Meyer G. // Z. Kristallogr. Cryst. Mater. 1993. V. 206. № 2. P. 306.
  3. Simon A., Georg Schnering H., Wöhrle H., Schäfer H. // Z. Anorg. Allg. Chem. 1965. V. 339. № 3–4. P. 155.
  4. Lin Z., Williams I.D. // Polyhedron. 1996. V. 15. № 19. P. 3277.
  5. Schäfer H., Gerken R., Scholz H. // Z. Anorg. Allg. Chem. 1965. V. 335. № 1–2. P. 96.
  6. Schäfer H., Dohmann K.-D. // Z Anorg Allg Chem. 1959. V. 300. № 1–2. P. 1.
  7. Schäfer H., Schnering H.G., Niehues K.J., Nieder-Vahrenholz H.G. // J. Less. Comm. Met. 1965. V. 9. № 2. P. 95.
  8. Von Schnering H.G., Vu D., Jin S.L., Peters K. // Z. Kristallogr. 1999. V. 214. № 1. P. 15.
  9. Habermehl K., Mudring A., Meyer G. // Eur. J. Inorg. Chem. 2010. P. 4075.
  10. McCarley R.E., Boatman J.C. // Inorg. Chem. 1965. V. 4. P. 1486.
  11. Hughes B.G., Meyer J.L., Fleming P.B., McCarley R. // Inorg Chem. 1970. V. 9. № 6. P. 1343.
  12. Sokolov M.N., Abramov P.A., Mikhailov M. A. et al. // Z. Anorg. Allg. Chem. 2010. V. 636. № 8. P. 1543.
  13. Shamshurin M.V., Abramov P.A., Mikhaylov M.A., Sokolov M.N. // J. Struct. Chem. 2022. V. 63. № 1. P. 81.
  14. Womelsdorf H., Meyer H.-J., Lachgar, A. // Z. Anorg. Allg. Chem. 1997. V. 623. № 1–6. P. 908.
  15. Baján B., Meyer H. // Z. Anorg. Allg. Chem. 1997. V. 623. № 1–6. P. 791.
  16. Ströbele M., Meyer H-J. // Z. Naturforsch. 2001. 56b. P. 1025.
  17. Lachgar A., Meyer H.-J. // J Solid State Chem. 1994. V. 110. № 1. P. 15.
  18. Womelsdorf H., Meyer H.-J. // Z Kristallogr Cryst Mater. 1995. V. 210. № 8. P. 608.
  19. Duraisamy T., Hay D. N., Messerle L. et al. // Inorg. Synth. 2014. V. 36. P. 1.
  20. Whittaker A.G., Mingos D.M.P. // Dalton Trans. 1995. № 12. P. 2073.
  21. Sitar J., Lachgar A., Womelsdorf H. et al. // J. Solid State Chem. 1996. V. 122. № 2. P. 428.
  22. Nägele A., Anokhina E., Sitar J. et al. // Z. Naturforsch. B. 2000. V. 55. № 2. P. 139.
  23. Duraisamy T., Lachgar A. // Acta Crystallogr. C. 2003. V. 59. № 4. P. 127.
  24. Duraisamy T., Qualls J.S., Lachgar A. // J. Solid State Chem. 2003. V. 170. № 2. P. 227.
  25. Cordier S., Perrin C., Sergent M. // Z. Anorg. Allg. Chem. 1993. V. 619. № 4. P. 621.
  26. Ramlau R., Duppel V., Simon A. et al. // J. Solid State Chem. 1998. V. 141. № 1. P. 140.
  27. Cordier S., Perrin C., Sergent M. //J. Solid State Chem. 1995. V. 118. №. 2. P. 274.
  28. Kòrösy., F. // J. Am. Chem. Soc. 1939. V. 61. № 4. P. 838.
  29. Shamshurin M. V., Mikhaylov M. A., Sukhikh T. et al. // Inorg Chem. 2019. V. 58. № 14. P. 9028.
  30. Bauer D., Schnering H.G., Schäfer H. // J. Less Comm. Met. 1968. V. 14. № 4. P. 476.
  31. Sägebarth M., Simon A. // Z. Anorg. Allg. Chem. 1990. V. 587. № 1. P. 119.
  32. Cordier S., Hernandez O., Perrin C. // J. Fluorine Chem. 2001. V. 107. № 2. P. 205.
  33. Cordier S., Simon A. // Solid State Sci. 1999. V. 1. №. 4. P. 199.
  34. Cordier S., Hernandez O., Perrin C. //J. Solid State Chem. 2001. V. 158. № 2. P. 327.
  35. Cordier S., Hernandez O., Perrin C. //J. Solid State Chem. 2002. V. 163. №.. 1. P. 319.
  36. Cordier S., Perrin C. //J. Solid State Chem. 2004. V. 177. № 3. P. 1017.
  37. Mingos. D.M P. // Acc. Chem. Res. 1984. V. 17. № 9. P. 311.
  38. Robin M.B., Kuebler N.A. // Inorg. Chem. 1965. V. 4. № 7. P. 978.
  39. Cotton F.A., Haas T.E. // Inorg. Chem. 1964. V. 3. № 1. P. 10.
  40. Schott E., Zarate X., Arratia-Pérez R. // Polyhedron. 2012. V. 36. № 1. P. 127.
  41. Shamshurin M.V., Martynova., S.A., Sokolov.M.N. et al. // Polyhedron. 2022. V. 226. P. 116107.
  42. Juza D., Schäfer H. // Z. Anorg. Allg. Chem. 1970. V. 379. № 2. P. 122.
  43. Perrin C., Ihmaine S., Sergent M. // New J. Chem. 1988. V. 12. № 6–7. P. 321.
  44. Cordier S., Perrin C., Sergent M. // Z. Anorg. Allg. Chem. 1993. V. 619. № 4. P. 621.
  45. Ihmaïne S., Perrin C., Peña O. et al. // Physica. B. 1990. V. 163. P. 615.
  46. Schäfer H., Spreckelmeyer B. // J. Less-Comm. Met. 1966. V. 11. № 1. P. 73.
  47. Vojnović M., Antolić S., Kojić‐Prodić B. et al. // Z. Anorg. Allg. Chem. 1997. V. 623. № 8. P. 1247.
  48. Simon A., von Schnering H.-G., Schäfer H. // Z. Anorg. Allg. Chem. 1968. V. 361. № 5–6. P. 235.
  49. Koknat F. W., McCarley R. E. // Inorg. Chem. 1972. V. 11. P. 812.
  50. Wilmet M., Lebastard C., Sciortino F. et al. // Dalton Trans. 2021. V. 50. P. 8002.
  51. Kamiguchi S., Watanabe M., Kondo K. et al. // J. Mol. Cat. A. 2003. V. 203. P. 153.
  52. Ivanov A.A., Pozmogova T.N., Solovieva A.O. et al. // Chem. Eur. J. 2020. V. 26. P. 7479. https://doi.org/10.1002/chem.202000739.
  53. Moussawi M.A., Leclerc-Laronze N., Floquet S. et al. // J. Am. Chem. Soc. 2017. V. 139. P. 12793.
  54. Širac S., Planinić P., Marić L. et al. // Inorg. Chim. Acta. 1998. V. 271. № 1–2. P. 239.
  55. Brničevič N., Nothig-Hus D., Kojic-Prodic B. et al. // Inorg. Chem. 1992. V. 31. № 19. P. 3924.
  56. Beck U., Simon A., Brničević N. et al. // Croat Chem Acta. 1995. V. 68. P. 837.
  57. Brničevič N., Muštovič F., McCarley R.E. // Inorg Chem. 1988. V. 27. P. 4532.
  58. Flemming A., Köckerling M. // Angew. Chem. Int. Ed. 2009. V. 48. P. 2605.
  59. Schröder F., Köckerling M. // J. Clust. Sci. 2022. V. 22. Р. 1.
  60. Schröder F., Köckerling M. // Z. Anorg. Allg. Chem. 2021. V. 647. P. 1625.
  61. Reckeweg O., Meyer H. // Z. Anorg. Allg. Chem. 1996. V. 622. № 3. P. 411.
  62. Naumov N.G., Cordier S., Perrin C. // Solid State Sci. 2003. V. 5. № 10. P. 1359.
  63. Meyer H.-J. // Z Anorg Allg Chem. 1995. V. 621, № 6. P. 921.
  64. Pigorsch A., Köckerling M. // Cryst Growth Des. 2016. V. 16, № 8. P. 4240.
  65. Shamshurin M., Gushchin A., Adonin S. et al. // Inorg. Chem. 2022. V. 61. № 42. P. 16586.
  66. Yan B., Zhou H., Lachgar A. // Inorg Chem. 2003. V. 42. № 26. P. 8818.
  67. Zhang J.-J., Lachgar A. // Inorg Chem. 2015. V. 54. № 3. P. 1082.
  68. Fleming A., König J., Köckerling M. // Z. Anorg. Allg. Chem. 2013. V. 639. P. 2527.
  69. Klendworth D.D., Walton R.A. // Inorg. Chem. 1981. V. 20. P. 1151.
  70. Field R.A., Kepert D.L. // J. Less Comm. Met. 1967. V. 13. № 4. P. 378.
  71. Imoto H. Hayakawa S., Morita N., Saito T. // Inorg Chem. 1990. V. 29. № 10. P. 2007.
  72. Field R.A., Kepert D.L., Robinson B.W. et al. // Dalton Trans. 1973. V. 18. P. 1858.
  73. Sperlich E., König J., Weiβ D.H. et al. // Z. Anorg. Allg. Chem. 2019. V. 645. P. 233.
  74. Weiβ D.H., Schröder F., Köckerling M. // Z. Anorg. Allg. Chem. 2017. V. 643. P. 345.
  75. Sperlich E., Köckerling M. // ChemistryOpen. 2021. V. 10. P. 248.
  76. Von Schnering H.G., Vu D., Jin S.L. et al. // Z. Kristallogr. 1999. V. 214. № 1. P. 15.
  77. Kuhn A., Dill S., Meyer H.J. // Z. Anorg. Allg. Chem. 2005. V. 631. № 9. P. 1565.
  78. Espenson J.H., Boone D.J. // Inorg. Chem. 1968. V. 7. № 4. P. 636.
  79. Jacobson R.A., Thaxton C.B. // Inorg. Chem. 1971. V. 10. № 7. P. 1460.
  80. Mikhailov M.A. Octahedral cluster niobium, tantalum, molybdenum, and tungsten halide complexes: Cand. Sci. (Chem.) Dissertation, Novosibirsk: Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 2013.
  81. Klendworth D.D., Walton R.A. // Inorg. Chem. 1981. V. 20. № 4. P. 1151.
  82. Beck U., Simon A., Širac S. et al. // Z. Anorg. Allg. Chem. 1997. V. 623. № 1. P. 59.
  83. Prokopuk N., Weinert C. S., Kennedy V. O. et al. // Inorg. Chim. Acta. 2000. V. 300. P. 951.
  84. König J., Köckerling M. // Chem. Eur. J. 2019. V. 25. № 61. P. 13836.
  85. Vogler A., Kunkely H. // Inorg. Chem. 1984. V. 23. № 10. P. 1360.
  86. Prokopuk N., Kennedy V.O., Stern C.L. et al. // Inorg. Chem. 1998. V. 37. № 19. P. 5001.
  87. Chapin W. H. // J. Am. Chem. Soc. 1910. V. 32. № 3. P. 323.
  88. Kamiguchi S., Nagashima S., Chihara., T. // Metals. 2014. V. 4. P. 84.
  89. Kamiguchi S., Nishida S., Kurokawa H. et al. // J. Mol. Catal. A. 2005. V. 226. P. 1.
  90. Nagashima S., Kamiguchi S., Chihara T. // Metals. 2014. V. 4. P. 235.
  91. Кamiguchi S., Noda M., Miyagishi Y. et al. // J. Mol. Catal. A. 2003. V. 195. P. 159.
  92. Nagashima S., Kamiguchi S., Ohguchi S. et al. // J. Clust. Sci. 2011. V. 22. P. 647.
  93. Kamiguchi S., Takahashi I., Kurokawa H. et al. // Appl. Catal. A. 2006. V. 309. P. 70.
  94. Kamiguchi S., Nakamura A., Suzuki A. et al. // J. Catal. 2005. V. 230. P. 204.
  95. Nagashima S., Kudo K., Yamazaki H. et al. // Appl. Catal. A. 2013. V. 450. P. 50.
  96. Nagashima S., Yamazaki H., Kudo K. et al. // Appl. Catal. A. 2013. V. 464. P. 332.
  97. Kamiguchi S., Nishida S., Takahashi I. et al. // J. Mol. Catal. A. 2006. V. 255. P. 117.
  98. Nagashima S., Kamiguchi S., Kudo K. et al. // Chem. Lett. 2011. V. 40. P. 78.
  99. Nagashima S., Sasaki T., Yamazaki H. Proceedings of the 7th International Symposium on Acid-Base Catalysis. Tokyo (Jpn): 2013. PA-051.
  100. Hernández J. S., Guevara D., Shamshurin M. et al. // Inorg. Chem. 2023. V. 62. № 46. P. 19060.
  101. Hernández J.S., Shamshurin M., Puche M. et al. // Nanomaterials. 2022. V. 12. P. 3647.
  102. Kato H., Kudo A. // Chem. Phys. Lett. 1998. V. 295. P. 487.
  103. Butts M.D., Torres A.S., Fitzgerald P.F. et al. // Invest. Radiol. 2016. V. 51. P. 786.
  104. Dahms S.O., Kuester M., Streb C. et al. // Acta Crystallogr. D. 2013. V. 69. P. 284.
  105. Zuev M.G., Larionov L.P. Tantalovye Rentgenokontrastnye Veshchestva (Tantalum X-Ray Constrast Compounds). Ekaterinburg: UrO RAN, 2002.
  106. Chakravarty S., Hix J.M.L., Wiewiora K.A. et al. // Nanoscale. 2020. V. 12. P. 7720.
  107. Lebastard C., Wilmet M., Cordier S. et al. // Nanomaterials. 2022. V. 12. P. 2052.
  108. Lebastard C., Wilmet M., Cordier S. et al. // Sci. Tech. Adv. Mater. 2022. V. 23. P. 446.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Cluster anion [Ta6Br18]4- as an example of the coordination fragment [{M6X12}L6] (M = Ta (blue), X = L = Br (green))

Download (80KB)
3. Fig. 2. Frontal projection of In[Nb6Cl15] structure: octahedrons represent Nb6 cluster nuclei connected by bridging Cl atoms; single atoms are In+ [14]

Download (109KB)
4. Fig. 3. Structure of Li2[Nb6Cl16]: layer (left) and three-dimensional framework with the participation of lithium ions (grey balls, right) are shown

Download (233KB)
5. Fig. 4. Structure of Ta6I14 ([Ta6Ii10Ii-a2/2}Ia-i2/2Ia-a2/2])

Download (93KB)
6. Fig. 5. MO diagram of {M6(µ2-X)12}2+ [1]

Download (64KB)
7. Fig. 6. Cluster cation [(Ta6Br12)(H2O)6]2+

Download (65KB)
8. Fig. 7. Structure of the [Ta6I12(DMF)6]2+ cluster

Download (67KB)
9. Fig. 8. Structure of [(Ta6Br12)(Dmso)2Cl4]

Download (80KB)
10. Scheme 1. Formation of catalytic centres during thermal treatment of [(M6X12)X2(H2O)4] · 4H2O

Download (77KB)
11. Scheme 2. Formation of indenes from benzaldehyde and 3-pentanone

Download (76KB)
12. Table 3_Fig. 1

Download (5KB)
13. Table 3_Fig. 2

Download (5KB)
14. Table 3_Fig. 3

Download (6KB)
15. Table 3_Fig. 4

Download (4KB)
16. Table 3_Fig. 5

Download (4KB)
17. Table 3_Fig. 6

Download (4KB)
18. Table 3_Fig. 7

Download (4KB)
19. Table 3_Fig. 8

Download (3KB)
20. Table 3_Fig. 9

Download (6KB)
21. Table 3_Fig. 10

Download (6KB)
22. Table 3_Fig. 11

Download (7KB)
23. Table 3_Fig. 12

Download (6KB)
24. Table 3_Fig. 13

Download (7KB)
25. Table 3_Fig. 14

Download (6KB)
26. Table 3_Fig. 15

Download (7KB)
27. Table 3_Fig. 16

Download (6KB)
28. Scheme 3. Cyclisation of α,ω-disubstituted aliphatic compounds

Download (41KB)
29. Scheme 4. Schematic diagram of the catalytic cycle of photochemical oxidation of the {Ta6Br12} cluster nucleus

Download (56KB)
30. Fig. 9. Energy diagram of electron transfer from the NSMO orbital [{Ta6Br12}Br2(H2O)4] to the p-system of graphene oxide

Download (59KB)

Copyright (c) 2024 Российская академия наук