Ditopic Centrosymmetric Mercaptobenzothiazole Dilithium Salts: From the Molecular Complex to Luminescent 1D Metal-Organic Frameworks

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The reaction of lithium amide LiN(Si(Me)3)2 and ditopic heterocyclic ligand benzo[1,2-d:4,5-d′]bis(thiazole)-2,6(3H,7H)-dithione (H2L) in dimethoxyethane (DME) affords the binuclear molecular complex Li2L(DME)4 (I). New compounds [[Li2L(ДМСО)4 • (ДМСО)2]n (II) and [Li2L(ДМСО)4 • (ТГФ)2]n (III) are prepared by the recrystallization of compound I using a DMSO–diethyl ether or DMSO/THF mixture of solvents, respectively. According to the XRD data, these compounds are one-dimensional metalorganic frameworks (MOFs) differed by the arrangement of the bis(thiazole) fragments relative to each other and the Li2O2 fragment in the polymer chain, which affects the luminescence properties. The molecular structures of compounds I–III are determined by XRD (CIF files CCDC nos. 2334192 (I), 2334193 (II), and 2334194 (III)).

Full Text

Restricted Access

About the authors

A. F. Rogozhin

Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences

Author for correspondence.
Email: atonrog@iomc.ras.ru
Russian Federation, Nizhny Novgorod

V. A. Ilyichev

Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences

Email: atonrog@iomc.ras.ru
Russian Federation, Nizhny Novgorod

L. I. Silantyeva

Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences

Email: atonrog@iomc.ras.ru
Russian Federation, Nizhny Novgorod

E. A. Kozlova

Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences

Email: atonrog@iomc.ras.ru
Russian Federation, Nizhny Novgorod

G. K. Fukin

Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences

Email: atonrog@iomc.ras.ru
Russian Federation, Nizhny Novgorod

M. N. Bochkarev

Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences

Email: atonrog@iomc.ras.ru
Russian Federation, Nizhny Novgorod

References

  1. Agafonov M.A., Alexandrov E.V., Artyukhova N.A. et al. // J. Struct. Chem. 2022. V. 63. P. 671.
  2. Zhang Y., Yuan S., Day G. et al // Coord. Chem. Rev. 2018. V. 354. P. 28.
  3. Yu. X., Ryadun A.A., Pavlov D.I. et al. // Angew. Chem. 2023. V. 135. Art. e202306680.
  4. Liu. Y. Y., Zhang., J., Sun L. X. et al. // Inorg. Chem. Commun. 2008. V. 11. P. 396.
  5. Yoon M., Srirambalaji R., Kim K. // Chem. Rev. 2012. V. 112. P. 1196.
  6. Suh M. P., Park H. J., Prasad T.K. et al. // Chem. Rev. 2012. V. 112. P. 782.
  7. Sapchenko S.A., Barsukova M.O., Belosludov R.V. et al // Inorg. Chem. 2012. V. 58. P. 6811.
  8. Abrahams B.F., Grannas M.J., Hudson T.A. et al. // Angew. Chem. Int. Ed. 2010. V. 122. P. 1105.
  9. Xie L-H., Lin J-B., Liu X.M. et al. // Inorg. Chem. 2010. V. 49. P. 1158.
  10. White K.F., Abrahams B.F., Babarao R. et al. // Chem. Eur. J. 2015. V. 21. P. 18057.
  11. Wang C., Zhang T., Lin W. // Chem. Rev. 2012. V. 112. P. 1084.
  12. Wang X., Wang Y., Wang Y. et al. // Chem. Commun. 2019. V. 56. P. 233.
  13. Mínguez Espallargas G., Coronado E. // Chem. Soc. Rev. 2018. V. 47. P. 533.
  14. Lestar M., Lusi M., O’Leary A. et al. // CrystEngComm. 2018. V. 20. P. 5940.
  15. Gou L., Zhang H.X., Fan X.Y. et al. // Inorg. Chim. Acta. 2013. V. 394. P.10.
  16. Xiang J., Chang C., Li M. et al. // Cryst. Growth. Des. 2008. V. 8. P. 280.
  17. Chen H., Armand M., Courty M. et al. // J. Am. Chem. Soc. 2009. V. 131. P. 8984.
  18. Yeung H.H.M., Kosa M., Parrinello M. et al. // Cryst. Growth. Des. 2011. V. 11. P. 221.
  19. Walker W., Grugeon S., Vezin H. et al. // Electrochem. Commun. 2010. V. 12. P. 1348.
  20. Liu, R.B. Zhu, J., Dai Y. et al. // Z. Anorg. Allg. Chem. 2013. V. 639. P. 569.
  21. Zhao X., Shimazu M.S., Chen X. // Angew. Chem. Int. Ed. 2018. V. 57. P. 6208.
  22. Cheng P.C., Lin W.C., Tseng F.S. et al. // Dalton Trans. 2013. V. 42. P. 2765.
  23. Thuéry P. // CrystEngComm. 2014. V. 16. P. 1724.
  24. White K.F., Abrahams B.F., Hudson T.A. et al. // ChemРlusСhem. 2016. V. 81. P. 877.
  25. Pugh D., Ashworth E., Robertson K. et al. // Cryst. Growth. Des. 2019. V. 19. P. 487.
  26. Koltunova T.K., Samsonenko D.G., Rakhmanova M.I. // Russ. Chem. Bull. 2015. V. 64. P. 2903.
  27. Clough A., Zheng S.T., Zhao X. et al. // Cryst. Growth. Des. 2014. V. 14. P. 897.
  28. Cheng P.C., Li B.H., Tsen F.S. et al. // Polymers. 2019. V. 11. P. 126.
  29. Zeng R.H., Li X.P., Qiu Y.C. et al. // Electrochem. Commun. 2010. V. 12. P. 1253.
  30. Tominaka S., Yeung H.H.M., Henke S. et al. // Cryst EngComm. 2016. V. 18. P. 398.
  31. Zhao X., Wu T., Zheng S.T. et al. // Chem. Commun. 2011. V. 47. P. 5536.
  32. Zheng S.T., Li Y., Wu T. et al. // Chem. Eur. J. 2010. V. 16. P. 13035.
  33. Chen X., Bu X., Lin Q. et al. // Cryst. Growth. Des. 2016. V. 16. P. 6531.
  34. Bazyakina N.L., Moskalev M.V., Cherkasov A.V. et al. // CrystEngComm. 2022. V. 24. P. 2297.
  35. Nadeem M., Bhatti M.H., Yunus U. et al. // Inorg. Chim. Acta. 2018. V. 479. P. 179.
  36. Abdelbaky M.S.M., Amghouz Z., García-Granda S. et al. // Dalton Trans. 2014. V. 43. P. 5739.
  37. Abdelbaky M.S.M., Amghouz Z., García-Granda,S. et al. // Polymers. 2016. V. 8. P. 86.
  38. Rogozhin A.F., Ilichev V.A., Fagin A.A. et al. // New J. Chem. 2022. V. 46. P. 13987.
  39. Ilichev V.A., Rogozhin A.F., Rumyantcev R.V. et al. // Inorg. Chem. 2023. V. 62. P. 12625.
  40. SAINT. Data Reduction and Correction Program. Version 8.27B. Madison (WI, USA): Bruker AXS, 2014
  41. Rigaku Oxford Diffraction. CrysAlis Pro software system. Version 1.171.41.122a. Wroclaw (Poland): Rigaku Corporation, 2021.
  42. Sheldrick G.M. SADABS-2012/1. Bruker/Siemens Area Detector Absorption Correction Program. Madison (WI, USA): Bruker AXS, 2012.
  43. Sheldrick G.M. // Acta Crystfllogr. A. 2015. V. 71. P. 3
  44. Sheldrick G.M. // Acta Crystfllogr. C. 2015. V. 71. P. 3
  45. Janiak C. // J. Chem. Soc. Dalton. Trans. 2000. P. 3885.
  46. Zhao W., He Z., Tang B.Z. // Nat. Rev. Mater. 2020. V. 5. P. 869.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Scheme 1. Synthesis of Li2L(DME)4 (I)

Download (90KB)
3. Fig. 1. Molecular structure of compound I

Download (149KB)
4. Fig. 2. Monomeric link (a) and polymer chain fragment (b) in the crystal of compound II

Download (306KB)
5. Fig. 3. Monomeric link (a) and polymer chain fragment (b) in the crystal of compound III

Download (282KB)
6. Fig. 4. Mutual arrangement of bis-thiazolate ligands relative to the Li2O2 fragment in II (a) and III (b)

Download (130KB)
7. Fig. 5. Mutual arrangement of control circuits in connections II (a) and III (b)

Download (480KB)
8. Fig. 6. PL spectrum of solid samples I-III at T = 298 K, λvozb = 370 nm

Download (118KB)
9. Fig. 7. PL spectrum of solid samples I-III at T = 77 K, λvozb = 310 nm

Download (115KB)

Copyright (c) 2024 Российская академия наук