Metal-Organic Frameworks of Cobalt(II) with 4,7-Di(1,2,4-triazol-1-yl)-2,1,3-benzothiadiazole and Aromatic Dicarboxylic Acids: Synthesis, Crystal Structures, and Magnetic Properties

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The reactions of cobalt(II) nitrate with 4,7-di(1,2,4-triazol-1-yl)-2,1,3-benzothiadiazole (Tr2btd) and aromatic dicarboxylic acids (terephthalic (H2bdc), 2,6-naphthalenedicarboxylic (2,6-H2Ndc), and 2,5-furandicarboxylic (2,5-H2Fdc) acids) afford metal-organic frameworks [Co(Tr2btd)(bdc)]n (I) and {[Co2(Tr2btd)(Dmf)(2,6-Ndc)2]·Dmf}n (II) with the layered structures and chain metal-organic framework [Co(Tr2btd)2(H2O)(2,5-Fdc)]n (III). Compounds I and III are paramagnetic in a temperature range of 1.77–300 K without exchange interactions between the Co2+ cations, and compound II exhibits the antiferromagnetic interaction between the Co2+ cations in the binuclear building blocks with the exchange interaction constant J ≈ −100 K. Single crystals of the phase of compound IIIa with the identical composition but different structure are found when taking samples for X-ray diffraction (XRD) analysis. The molecular structures of metal-organic frameworks I, II, III, and IIIa are determined by XRD (CIF files CCDC nos. 2343141 (I), 2343297 (II), 2343296 (III), and 2343140 (IIIa)).

Full Text

Restricted Access

About the authors

D. I. Pavlov

Novosibirsk State University; Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: potapov@niic.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk

A. N. Lavrov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: potapov@niic.nsc.ru
Russian Federation, Novosibirsk

D. G. Samsonenko

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: potapov@niic.nsc.ru
Russian Federation, Novosibirsk

A. S. Potapov

Novosibirsk State University; Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: potapov@niic.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk

References

  1. Agafonov M.A., Alexandrov E.V., Artyukhova N.A. et al. // J. Struct. Chem. 2022, V. 63, P. 671. https://doi.org/10.1134/S0022476622050018
  2. Dybtsev D.N., Bryliakov K.P. // Coord. Chem. Rev. 2021. V. 437. P. 213845.
  3. You L.-X., Ren B.-Y., He Y.-K. et al. // J. Mol. Struct. 2024. V. 1304. P. 137687.
  4. Zhou H.C.J., Kitagawa S. // Chem. Soc. Rev. 2014. V. 43. P. 5415.
  5. Zhou W., Tang Y., Zhang X. et al. // Coord. Chem. Rev. 2023. V. 477. P. 214949.
  6. Efimova A.S., Alekseevskiy P.V., Timofeeva M.V. et al. // Small Methods. 2023. V. 7. P. 2300752.
  7. Wang W., Chen D., Li F., Xiao X., Xu Q. // Chem. 2024. V. 10. P. 86.
  8. Sun N., Yu H., Potapov A.S., Sun Y. // Comments Inorg. Chem. 2024. V. 44. P. 203.
  9. Kovalenko K.A., Potapov A.S., Fedin V.P. // Russ. Chem. Rev. 2022. V. 91. RCR5026. https://doi.org/10.1070/RCR5026
  10. Yuvaraj A.R., Jayarama A., Sharma D. et al. // Int. J. Hydrogen Energy. 2024. V. 59. P. 1434.
  11. Thorarinsdottir A.E., Harris T.D. // Chem. Rev. 2020. V. 120. P. 8716.
  12. Shuku Y., Suizu R., Tsuchiizu M., Awaga K. // Chem. Commun. 2023. V. 59. P. 10105.
  13. Demakov P.A., Kovalenko K.A., Lavrov A.N., Fedin V.P. // Inorganics. 2023. V. 11. P. 259.
  14. Dubskikh V.A., Lysova A.A., Samsonenko D.G. et al. // Molecules. 2021. V. 26. P. 1269.
  15. Du M., Li C.-P., Liu C.-S., Fang S.-M. // Coord. Chem. Rev. 2013. V. 257. P. 1282.
  16. Pramanik B., Sahoo R., Das M.C. // Coord. Chem. Rev. 2023. V. 493. P. 215301.
  17. Pavlov D.I., Ryadun A.A., Potapov A.S. // Molecules. 2021. V. 26. P. 7392.
  18. Pavlov D.I., Yu X., Ryadun A.A. et al. // Food Chem. 2024. V. 445. P. 138747.
  19. Pavlov D.I., Yu X., Ryadun A.A., Fedin V.P., Potapov A.S. // Chemosensors. 2023. V. 11. P. 52.
  20. Khisamov R.M., Konchenko S.N., Sukhikh T.S. // J. Struct. Chem. 2022. V. 63. P. 2113. https://doi.org/10.1134/S0022476622120228
  21. Khisamov R.M., Ryadun A.A., Konchenko S.N., Sukhikh T.S. // Molecules. 2022. V. 27. P. 8162.
  22. Khisamov R.M., Sukhikh T.S., Konchenko S.N., Pushkarevsky N.A. // Inorganics. 2022. V. 10. P. 263.
  23. Sukhikh T.S., Ogienko D.S., Bashirov D.A., Konchenko S.N. // Russ. Chem. Bull. 2019. V. 68. P. 651. https://doi.org/10.1007/s11172-019-2472-9
  24. Katlenok E.A., Kuznetsov M.L., Semenov N.A. et al. // Inorg. Chem. Front. 2023. V. 10. P. 3065.
  25. Radiush E.A., Wang H., Chulanova E.A. et al. // ChemPlusChem. 2023. V. 88. Art. e202300523.
  26. Fedorov M.S., Filippov I.A., Giricheva N.I. et al. // J. Struct. Chem. 2022. V. 63, P. 1872. https://doi.org/10.1134/S0022476622110178
  27. Chernick E.T., Abdollahi M.F., Tabasi Z.A. et al. // New J. Chem. 2022. V. 46. P. 572.
  28. Yao S.L., Wu R.H., Wen P. et al. // J. Mol. Struct. 2024. V. 1297. 136925.
  29. Cao X.Q., Wu W.P., Li Q. et al. // Dalton Trans. 2022. V. 52. P. 652.
  30. Li L.-Q., Yao S.-L., Tian X.-M. et al. // CrystEngComm. 2021. V. 23. P. 2532.
  31. Yao S.L., Xiong Y.C., Tian X.M. et al. // CrystEngComm. 2021. V. 23. P. 1898.
  32. Jin J.K., Wu K., Liu X.Y. et al. // J. Am. Chem. Soc. 2021. V. 143. P. 21340.
  33. Song C., Ling Y., Jin L. et al. // Dalton Trans. 2015. V. 45. P. 190.
  34. Wu K., Liu X.-Y., Cheng P.-W. et al. // J. Am. Chem. Soc. 2023. V. 145. P. 18931.
  35. Wu K., Jin J.K., Liu X.Y. et al. // J. Mater. Chem. C 2022. V. 10. P. 11967.
  36. Sheldrick G.M. SADABS. Program for Empirical X-ray Absorption Correction. 2005.
  37. Svetogorov R.D., Dorovatovskii P.V., Lazarenko V.A. // Cryst. Res. Technol. 2020. V. 55. P. 1900184.
  38. Lazarenko V.A., Dorovatovskii P.V., Zubavichus Y.V. et al. // Crystals. 2017. V. 7. P. 325.
  39. Kabsch W. // Acta Crystallogr. D. 2010. V. 66. P. 125.
  40. Kabsch W. // Acta Crystallogr. D. 2010. V. 66. P. 133.
  41. CrysAlisPro. Agilent Technologies, Version 1.171.34.49 (release 20-01-2011 CrysAlis171 .NET).
  42. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3.
  43. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
  44. Healy C., Patil K.M., Wilson B.H. et al. // Coord. Chem. Rev. 2020. V. 419. P. 213388.
  45. Boča R. // Coord. Chem. Rev. 2004. V. 248. P. 757.
  46. Yue Q., Gao E.-Q. // Coord. Chem. Rev. 2019. V. 382. P. 1.
  47. Abasheeva K. D., Demakov P. A., Polyakova E. V. et al. // Nanomaterials. 2023. V. 13. P. 2773.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Scheme 1.

Download (72KB)
3. Fig. 1. Thermogravimetric analysis curves of compounds I-III.

Download (67KB)
4. Fig. 2. Calculated (bottom) and experimental (top) powder diffractograms of compounds I (a), II (b) and III (c).

Download (318KB)
5. Fig. 3. Crystal structure of compound I: fragment of the coordination polymer layer (a); concatenation of neighboring layers (b); packing of layers with π-π interactions between 2,1,3-benzothiadiazole cycles (c).

Download (602KB)
6. Fig. 4. Crystal structure of compound II: bi-nuclear secondary building block (a); fragment of the coordination polymer layer (b); packing of layers with π-π interactions between 2,1,3-benzothiadiazole and naphthalene cycles (c).

Download (413KB)
7. Fig. 5. Crystal structure of compounds III and IIIa: independent part of the structure of III (a); chain fragment of coordination polymer III (b); packing of neighboring chains of coordination polymer III (c); chain fragment of coordination polymer IIIa (d).

Download (405KB)
8. Fig. 6. Magnetic properties of compound III: temperature dependences of paramagnetic component of magnetic susceptibility χp measured in magnetic fields H = 1, 10 kE (a); temperature dependences of inverse susceptibility 1/χp and effective magnetic moment эфф per one cobalt ion calculated in the approximation of non-interacting ions (θ = 0) (b).

Download (214KB)
9. Fig. 7. Magnetic properties of compound I: temperature dependences of the paramagnetic component of magnetic susceptibility χp measured in a magnetic field H = 10 kE and effective magnetic moment eff per one cobalt ion calculated in the approximation of non-interacting ions (θ = 0), open circles show the values of эфф after subtracting the contribution of the FM phase with Curie temperature Tc ~ 50 K (a); field dependences of magnetization M measured at T = 1. 77 K, and the normalized magnetic susceptibility χ corrected for the ferromagnetic contribution (filled circles) (b); the dashed line in figure (b) shows the approximation of the data by the Brillouin function for S = 3/2, g = 2.44; the χ(H)/χ(0) data for compound III (open triangles) are shown for comparison.

Download (230KB)
10. Fig. 8. Magnetic properties of compound II: temperature dependences of the paramagnetic component of magnetic susceptibility χp measured during thermocycling in a magnetic field H = 0. 1 kE and during cooling in the field H = 10 kE (a); temperature dependence of the effective magnetic moment эфф per formula unit calculated in the approximation of non-interacting molecules (θ = 0), the dashed line shows the approximation of experimental data by the model of AFM-dimers Co2+-Co2+ (J/kB ≈ -100 K) taking into account the splitting of ion levels in the zero field (D/kB = 55 K) (b).

Download (214KB)

Copyright (c) 2024 Российская академия наук