Metal-Organic Frameworks of Cobalt(II) with 4,7-Di(1,2,4-triazol-1-yl)-2,1,3-benzothiadiazole and Aromatic Dicarboxylic Acids: Synthesis, Crystal Structures, and Magnetic Properties

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The reactions of cobalt(II) nitrate with 4,7-di(1,2,4-triazol-1-yl)-2,1,3-benzothiadiazole (Tr2btd) and aromatic dicarboxylic acids (terephthalic (H2bdc), 2,6-naphthalenedicarboxylic (2,6-H2Ndc), and 2,5-furandicarboxylic (2,5-H2Fdc) acids) afford metal-organic frameworks [Co(Tr2btd)(bdc)]n (I) and {[Co2(Tr2btd)(Dmf)(2,6-Ndc)2]·Dmf}n (II) with the layered structures and chain metal-organic framework [Co(Tr2btd)2(H2O)(2,5-Fdc)]n (III). Compounds I and III are paramagnetic in a temperature range of 1.77–300 K without exchange interactions between the Co2+ cations, and compound II exhibits the antiferromagnetic interaction between the Co2+ cations in the binuclear building blocks with the exchange interaction constant J ≈ −100 K. Single crystals of the phase of compound IIIa with the identical composition but different structure are found when taking samples for X-ray diffraction (XRD) analysis. The molecular structures of metal-organic frameworks I, II, III, and IIIa are determined by XRD (CIF files CCDC nos. 2343141 (I), 2343297 (II), 2343296 (III), and 2343140 (IIIa)).

Texto integral

Acesso é fechado

Sobre autores

D. Pavlov

Novosibirsk State University; Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: potapov@niic.nsc.ru
Rússia, Novosibirsk; Novosibirsk

A. Lavrov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: potapov@niic.nsc.ru
Rússia, Novosibirsk

D. Samsonenko

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: potapov@niic.nsc.ru
Rússia, Novosibirsk

A. Potapov

Novosibirsk State University; Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: potapov@niic.nsc.ru
Rússia, Novosibirsk; Novosibirsk

Bibliografia

  1. Agafonov M.A., Alexandrov E.V., Artyukhova N.A. et al. // J. Struct. Chem. 2022, V. 63, P. 671. https://doi.org/10.1134/S0022476622050018
  2. Dybtsev D.N., Bryliakov K.P. // Coord. Chem. Rev. 2021. V. 437. P. 213845.
  3. You L.-X., Ren B.-Y., He Y.-K. et al. // J. Mol. Struct. 2024. V. 1304. P. 137687.
  4. Zhou H.C.J., Kitagawa S. // Chem. Soc. Rev. 2014. V. 43. P. 5415.
  5. Zhou W., Tang Y., Zhang X. et al. // Coord. Chem. Rev. 2023. V. 477. P. 214949.
  6. Efimova A.S., Alekseevskiy P.V., Timofeeva M.V. et al. // Small Methods. 2023. V. 7. P. 2300752.
  7. Wang W., Chen D., Li F., Xiao X., Xu Q. // Chem. 2024. V. 10. P. 86.
  8. Sun N., Yu H., Potapov A.S., Sun Y. // Comments Inorg. Chem. 2024. V. 44. P. 203.
  9. Kovalenko K.A., Potapov A.S., Fedin V.P. // Russ. Chem. Rev. 2022. V. 91. RCR5026. https://doi.org/10.1070/RCR5026
  10. Yuvaraj A.R., Jayarama A., Sharma D. et al. // Int. J. Hydrogen Energy. 2024. V. 59. P. 1434.
  11. Thorarinsdottir A.E., Harris T.D. // Chem. Rev. 2020. V. 120. P. 8716.
  12. Shuku Y., Suizu R., Tsuchiizu M., Awaga K. // Chem. Commun. 2023. V. 59. P. 10105.
  13. Demakov P.A., Kovalenko K.A., Lavrov A.N., Fedin V.P. // Inorganics. 2023. V. 11. P. 259.
  14. Dubskikh V.A., Lysova A.A., Samsonenko D.G. et al. // Molecules. 2021. V. 26. P. 1269.
  15. Du M., Li C.-P., Liu C.-S., Fang S.-M. // Coord. Chem. Rev. 2013. V. 257. P. 1282.
  16. Pramanik B., Sahoo R., Das M.C. // Coord. Chem. Rev. 2023. V. 493. P. 215301.
  17. Pavlov D.I., Ryadun A.A., Potapov A.S. // Molecules. 2021. V. 26. P. 7392.
  18. Pavlov D.I., Yu X., Ryadun A.A. et al. // Food Chem. 2024. V. 445. P. 138747.
  19. Pavlov D.I., Yu X., Ryadun A.A., Fedin V.P., Potapov A.S. // Chemosensors. 2023. V. 11. P. 52.
  20. Khisamov R.M., Konchenko S.N., Sukhikh T.S. // J. Struct. Chem. 2022. V. 63. P. 2113. https://doi.org/10.1134/S0022476622120228
  21. Khisamov R.M., Ryadun A.A., Konchenko S.N., Sukhikh T.S. // Molecules. 2022. V. 27. P. 8162.
  22. Khisamov R.M., Sukhikh T.S., Konchenko S.N., Pushkarevsky N.A. // Inorganics. 2022. V. 10. P. 263.
  23. Sukhikh T.S., Ogienko D.S., Bashirov D.A., Konchenko S.N. // Russ. Chem. Bull. 2019. V. 68. P. 651. https://doi.org/10.1007/s11172-019-2472-9
  24. Katlenok E.A., Kuznetsov M.L., Semenov N.A. et al. // Inorg. Chem. Front. 2023. V. 10. P. 3065.
  25. Radiush E.A., Wang H., Chulanova E.A. et al. // ChemPlusChem. 2023. V. 88. Art. e202300523.
  26. Fedorov M.S., Filippov I.A., Giricheva N.I. et al. // J. Struct. Chem. 2022. V. 63, P. 1872. https://doi.org/10.1134/S0022476622110178
  27. Chernick E.T., Abdollahi M.F., Tabasi Z.A. et al. // New J. Chem. 2022. V. 46. P. 572.
  28. Yao S.L., Wu R.H., Wen P. et al. // J. Mol. Struct. 2024. V. 1297. 136925.
  29. Cao X.Q., Wu W.P., Li Q. et al. // Dalton Trans. 2022. V. 52. P. 652.
  30. Li L.-Q., Yao S.-L., Tian X.-M. et al. // CrystEngComm. 2021. V. 23. P. 2532.
  31. Yao S.L., Xiong Y.C., Tian X.M. et al. // CrystEngComm. 2021. V. 23. P. 1898.
  32. Jin J.K., Wu K., Liu X.Y. et al. // J. Am. Chem. Soc. 2021. V. 143. P. 21340.
  33. Song C., Ling Y., Jin L. et al. // Dalton Trans. 2015. V. 45. P. 190.
  34. Wu K., Liu X.-Y., Cheng P.-W. et al. // J. Am. Chem. Soc. 2023. V. 145. P. 18931.
  35. Wu K., Jin J.K., Liu X.Y. et al. // J. Mater. Chem. C 2022. V. 10. P. 11967.
  36. Sheldrick G.M. SADABS. Program for Empirical X-ray Absorption Correction. 2005.
  37. Svetogorov R.D., Dorovatovskii P.V., Lazarenko V.A. // Cryst. Res. Technol. 2020. V. 55. P. 1900184.
  38. Lazarenko V.A., Dorovatovskii P.V., Zubavichus Y.V. et al. // Crystals. 2017. V. 7. P. 325.
  39. Kabsch W. // Acta Crystallogr. D. 2010. V. 66. P. 125.
  40. Kabsch W. // Acta Crystallogr. D. 2010. V. 66. P. 133.
  41. CrysAlisPro. Agilent Technologies, Version 1.171.34.49 (release 20-01-2011 CrysAlis171 .NET).
  42. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3.
  43. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
  44. Healy C., Patil K.M., Wilson B.H. et al. // Coord. Chem. Rev. 2020. V. 419. P. 213388.
  45. Boča R. // Coord. Chem. Rev. 2004. V. 248. P. 757.
  46. Yue Q., Gao E.-Q. // Coord. Chem. Rev. 2019. V. 382. P. 1.
  47. Abasheeva K. D., Demakov P. A., Polyakova E. V. et al. // Nanomaterials. 2023. V. 13. P. 2773.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Scheme 1.

Baixar (72KB)
3. Fig. 1. Thermogravimetric analysis curves of compounds I-III.

Baixar (67KB)
4. Fig. 2. Calculated (bottom) and experimental (top) powder diffractograms of compounds I (a), II (b) and III (c).

Baixar (318KB)
5. Fig. 3. Crystal structure of compound I: fragment of the coordination polymer layer (a); concatenation of neighboring layers (b); packing of layers with π-π interactions between 2,1,3-benzothiadiazole cycles (c).

Baixar (602KB)
6. Fig. 4. Crystal structure of compound II: bi-nuclear secondary building block (a); fragment of the coordination polymer layer (b); packing of layers with π-π interactions between 2,1,3-benzothiadiazole and naphthalene cycles (c).

Baixar (413KB)
7. Fig. 5. Crystal structure of compounds III and IIIa: independent part of the structure of III (a); chain fragment of coordination polymer III (b); packing of neighboring chains of coordination polymer III (c); chain fragment of coordination polymer IIIa (d).

Baixar (405KB)
8. Fig. 6. Magnetic properties of compound III: temperature dependences of paramagnetic component of magnetic susceptibility χp measured in magnetic fields H = 1, 10 kE (a); temperature dependences of inverse susceptibility 1/χp and effective magnetic moment эфф per one cobalt ion calculated in the approximation of non-interacting ions (θ = 0) (b).

Baixar (214KB)
9. Fig. 7. Magnetic properties of compound I: temperature dependences of the paramagnetic component of magnetic susceptibility χp measured in a magnetic field H = 10 kE and effective magnetic moment eff per one cobalt ion calculated in the approximation of non-interacting ions (θ = 0), open circles show the values of эфф after subtracting the contribution of the FM phase with Curie temperature Tc ~ 50 K (a); field dependences of magnetization M measured at T = 1. 77 K, and the normalized magnetic susceptibility χ corrected for the ferromagnetic contribution (filled circles) (b); the dashed line in figure (b) shows the approximation of the data by the Brillouin function for S = 3/2, g = 2.44; the χ(H)/χ(0) data for compound III (open triangles) are shown for comparison.

Baixar (230KB)
10. Fig. 8. Magnetic properties of compound II: temperature dependences of the paramagnetic component of magnetic susceptibility χp measured during thermocycling in a magnetic field H = 0. 1 kE and during cooling in the field H = 10 kE (a); temperature dependence of the effective magnetic moment эфф per formula unit calculated in the approximation of non-interacting molecules (θ = 0), the dashed line shows the approximation of experimental data by the model of AFM-dimers Co2+-Co2+ (J/kB ≈ -100 K) taking into account the splitting of ion levels in the zero field (D/kB = 55 K) (b).

Baixar (214KB)

Declaração de direitos autorais © Российская академия наук, 2024