Optimization of the synthesis of salts [V10O28]6– for the preparation of [VO2(DMSO)4](CF3SO3) and its immobilization on polyethylene terephthalate for catalytic applications

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Aspects of the synthesis and isolation of (Bu4N)3[H3V10O28] (I) and Na6[V10O28] · 18H2O (II) from one reaction mixture are considered. The procedure for the synthesis of compound I is optimized. The reaction of compound I and HSO3CF3 in dimethyl sulfoxide (DMSO) affords complex [VO2(DMSO)4](CF3SO3) (III). A possibility of using complex III for the preparation of catalytically active materials based on polyethylene terephthalate (PET) is shown.

Full Text

Restricted Access

About the authors

P. A. Abramov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: abramov@niic.nsc.ru
Russian Federation, Novosibirsk

N. B. Kompan’kov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: abramov@niic.nsc.ru
Russian Federation, Novosibirsk

V. S. Sulyaeva

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: abramov@niic.nsc.ru
Russian Federation, Novosibirsk

M. N. Sokolov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: abramov@niic.nsc.ru
Russian Federation, Novosibirsk

References

  1. Pope M.T. Heteropoly and Isopoly Oxometalates. Berlin: Springer-Verlag, 1983. https://www.springer.com/gp/book/9783662120064 (accessed September 21, 2017)
  2. Kozhevnikov I.V. // Polyoxometal. Mol. Sci. 2003. V. 98. P. 351.
  3. Kozhevnikov I.., Kloetstra K.., Sinnema A. et al. // J. Mol. Catal. A. 1996. V. 114. № 1–3. P. 287. https://doi.org/10.1016/S1381-1169(96)00328-7
  4. Johnson H.N., Kirkbright G.F., Whitehouse R.J. // Anal. Chem. 1973. V. 45. № 9. P. 1603. https://doi.org/10.1021/ac60331a032
  5. Dubovik D.B., Tikhomirova T.I., Ivanov A.V. et al. // J. Anal. Chem. 2003. V. 58. P. 802. https://doi.org/10.1023/A:1025672831189
  6. Negrin A. // Clin. Chem. 1969. V. 15. № 9. P. 829. https://doi.org/10.1093/clinchem/15.9.829
  7. Scott J.E. // J. Histochem. Cytochem. 1971. V. 19. № 11. P. 689. https://doi.org/10.1177/19.11.689
  8. Sternberg M.Z. // Biotechnol. Bioeng. 1970. V. 12. № 1. P. 1. https://doi.org/10.1002/bit.260120102
  9. Yamase T. // Mol. Eng. 1993. V. 3. № 1–3. P. 241. https://doi.org/10.1007/BF00999636
  10. Raza R., Matin A., Sarwar S. et al. // Dalton Trans. 2012. V. 41. № 47. P. 14329. https://doi.org/10.1039/c2dt31784b
  11. Moore F.W., Tsigdinos G.A. // J. Less Common Met. 1977. V. 54. № 1. P. 297. https://doi.org/10.1016/0022-5088(77)90151-5
  12. Tsigdinos G.A. // Top. Curr. Chem. 1978. p. 14. https://doi.org/10.1007/BFb0047026
  13. Miras H.N., Cooper G.J.T., Long D.-L. et al. // Science.. 2010. V. 327. № 5961. P. 72. https://doi.org/10.1126/science.1181735
  14. Christie L.G., Surman A.J., Scullion R.A. et al. // Angew. Chem. Int. Ed. 2016. V. 55. № 41. P. 12741. https://doi.org/10.1002/anie.201606005
  15. Müller A., Kögerler P., Dress A.W.M.W.M. // Coord. Chem. Rev. 2001. V. 222. № 1. P. 193. https://doi.org/10.1016/S0010-8545(01)00391-5
  16. Lian X.-K., Chen H.-B., Lin Y.-D. et al. // Coord. Chem. Rev. 2023. V. 497. P. 215440. https://doi.org/10.1016/j.ccr.2023.215440
  17. Lv W., Han S.-D., Li X.-Y. et al. // Coord. Chem. Rev. 2023. V. 495. P. 215376. https://doi.org/10.1016/j.ccr.2023.215376
  18. Granadeiro C.M., Julião D., Ribeiro S.O. et al. // Coord. Chem. Rev. 2023. V. 476. P. 214914. https://doi.org/10.1016/j.ccr.2022.214914
  19. Zhang H., Li A., Li K. et al. // Nature. 2023. V. 616. № 7957. P. 482. https://doi.org/10.1038/s41586-023-05840-z
  20. Nyman M., Deblonde G. // Nature. 2023. V. 616. № 7957. P. 438. https://doi.org/10.1038/d415860023001019-8
  21. Liu C., Zhang Z., Liu W. et al. // Green Energy Environ. 2017. V. 2. № 4. P. 436. https://doi.org/10.1016/j.gee.2016.12.003
  22. Cai X., Xu Q., Tu G. et al. // Front. Chem. 2019. V. 7:42.? https://doi.org/10.3389/fchem.2019.00042
  23. Song J., Luo Z., Britt D.K. et al. // J. Am. Chem. Soc. 2011. V. 133. № 42. P. 16839. https://doi.org/10.1021/ja203695h
  24. Monakhov K.Y., Bensch W., Kögerler P. // Chem. Soc. Rev. 2015. V. 44. № 23. https://doi.org/10.1039/C5CS00531K
  25. Wendt M., Warzok U., Näther C. et al. // Chem. Sci. 2016. V. 7. № 4. P. 2684. https://doi.org/10.1039/C5SC04571A
  26. Ma P., Hu F., Wang J. et al. // Coord. Chem. Rev. 2018. V. 378. P. 281. https://doi.org/10.1016/J.CCR.2018.02.010
  27. Aureliano M., Gumerova N.I., Sciortino G. et al. // Coord. Chem. Rev. 2021. V. 447. P. 214143. https://doi.org/10.1016/j.ccr.2021.214143
  28. Wang J., Liu X., Du Z. et al. // Dalton Trans. 2021. V. 50. № 23. P. 7871. https://doi.org/10.1039/D1DT00494H
  29. Li J., Zhang D., Chi Y. et al. // Polyoxometalates. 2022. V. 1. № 2. P. 9140012. https://doi.org/10.26599/POM.2022.9140012
  30. Anjass M., Lowe G.A., Streb C. // Angew. Chem. Int. Ed. 2021. V. 60. № 14. P. 7522. https://doi.org/10.1002/anie.202010577
  31. Fraqueza G., Aureliano M. // BiTaP MDPI. 2022, p. 8 https://doi.org/10.3390/BiTaP-12844
  32. Shuvaeva O. V., Zhdanov A.A., Romanova T.E. et al. // Dalton Trans. 2017. V. 46. № 11. P. 3541. https://doi.org/10.1039/C6DT04843A
  33. Volchek V. V., Kompankov N.B., Sokolov M.N. et al. // Molecules. 2022. V. 27. № 23. P. 8368. https://doi.org/10.3390/molecules27238368
  34. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
  35. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
  36. Hübschle C.B., Sheldrick G.M., Dittrich B. // J. Appl. Crystallogr. 2011. V. 44. № 6. P. 1281. https://doi.org/10.1107/S0021889811043202
  37. Klemperer W.G. // Inorg. Synth. 1990. p. 74. https://doi.org/10.1002/9780470132586.ch15
  38. Domaille P.J. // J. Am. Chem. Soc. 1984. V. 106. № 25. P. 7677. https://doi.org/10.1021/ja00337a004
  39. Durif A., Averbuch-Pouchot M.T., Guitel J.C. // Acta Crystallogr. B. 1980. V. 36. № 3. P. 680. https://doi.org/10.1107/S0567740880004116
  40. Bošnjaković-Pavlović N., Prévost J., Spasojević-de Biré A. // Cryst. Growth Des. 2011. V. 11. № 9. P. 3778. https://doi.org/10.1021/cg200236d
  41. Krakowiak J., Lundberg D., Persson I. // Inorg. Chem. 2012. V. 51. № 18. P. 9598. https://doi.org/10.1021/ic300202f
  42. Guselnikova O., Svanda J., Postnikov P. et al. // Adv. Mater. Interfaces. 2017. V. 4. № 5. https://doi.org/10.1002/admi.201600886
  43. Guselnikova O., Elashnikov R., Postnikov P. et al. // ACS Appl. Mater. Interfaces. 2018. V. 10. № 43. P. 37461. https://doi.org/10.1021/acsami.8b06840
  44. Guselnikova O., Barras A., Addad A. et al. // Sep. Purif. Technol. 2020. V. 240. P. 116627. https://doi.org/10.1016/j.seppur.2020.116627
  45. Guselnikova O., Semyonov O., Kirgina M. et al. // J. Environ. Chem. Eng. 2022. V. 10. № 2. P. 107105. https://doi.org/10.1016/j.jece.2021.107105
  46. Semyonov O., Chaemchuen S., Ivanov A. et al. // Appl. Mater. Today. 2021. V. 22. P. 100910. https://doi.org/10.1016/j.apmt.2020.100910
  47. Kogolev D., Semyonov O., Metalnikova N. et al. // J. Mater. Chem. A. 2023. V. 11. № 3. P. 1108. https://doi.org/10.1039/D2TA08127J
  48. Guselnikova O., Semyonov O., Sviridova E. et al. // Chem. Soc. Rev. 2023. V. 52. № 14. P. 4755. https://doi.org/10.1039/D2CS00689H
  49. Licini G., Conte V., Coletti A. et al. // Coord. Chem. Rev. 2011. V. 255. № 19–20. P. 2345. https://doi.org/10.1016/j.ccr.2011.05.004
  50. Langeslay R.R., Kaphan D.M., Marshall C.L. et al. // Chem. Rev. 2019. V. 119. № 4. P. 2128. https://doi.org/10.1021/acs.chemrev.8b00245
  51. Maksimchuk N. V., Kholdeeva O.A., Kovalenko K.A. et al. // Isr. J. Chem. 2011. V. 51. № 2. P. 281. https://doi.org/10.1002/ijch.201000082
  52. Evtushok V.Y., Suboch A.N., Podyacheva O.Y. et al. // ACS Catal. 2018. V. 8. № 2. P. 1297. https://doi.org/10.1021/acscatal.7b03933
  53. Rodikova Y.A., Zhizhina E.G., Pai Z.P. // Appl. Catal. A. 2018. V. 549. P. 216. https://doi.org/10.1016/j.apcata.2017.09.022
  54. Palion-Gazda J., Luz A., Raposo L.R. et al. // Molecules. 2021. V. 26. № 21. P. 6364. https://doi.org/10.3390/molecules26216364
  55. Zhao L., Yang P., Shi S. et al. // ACS Catal. 2022. V. 12. № 24. P. 15249. https://doi.org/10.1021/acscatal.2c04601
  56. Kikukawa Y., Sakamoto Y., Hirasawa H. et al. // Catal. Sci. Technol. 2022. V. 12. № 8. P. 2438. https://doi.org/10.1039/D1CY02103F
  57. Fomenko I.S., Gushchin A.L., Abramov P.A. et al. // Catalysts. 2019. V. 9. № 3.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Comparison of experimental XRD data (298 K) and calculated data obtained from PCA data (150 K) for complex I.

Download (214KB)
3. Fig. 2. Comparison of experimental XRD data (298 K) and calculated data obtained from PCA data (150 K) for complex III.

Download (284KB)
4. Fig. 3. Structure of the [V10O28]6- anion (a) and the [VO2(DMSO)4]+ cation (b). Spherical rod models, the hydrogen atoms of the methyl groups are not shown for clarity.

Download (286KB)
5. Fig. 4. 51V NMR spectra of solutions of III (298 K) in (CD3)2SO (a), (CD3)2CO (b), D2O (c). Spectrum of complex I in CD3CN (d).

Download (146KB)
6. Fig. 5. SEM image of the sample (a), EDX mapping of vanadium, oxygen and carbon and their joint image (b) and energy dispersive spectrum (c).

Download (1MB)
7. tab.1

Download (9KB)
8. tab.2

Download (12KB)
9. tab.3

Download (8KB)
10. tab.4

Download (9KB)
11. tab.5

Download (13KB)
12. tab.6

Download (9KB)

Copyright (c) 2024 Российская академия наук