Luminescence properties of heterometallic lanthanide complexes based on lithium β-diketonate bearing tert-butyl and acetal group

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Nonsymmetrical lithium β-diketonate (LiL) containing tert-butyl and acetal substituents at the dicarbonyl cage has been synthesized for the first time and is structurally characterized (CIF file CCDC no. 2364039 (I)). The reactions of functional lithium β-diketonate with salts of trivalent rare-earth metals in methanol afford heterobinuclear complexes [(LnL3)(LiL)(MeOH)] (Ln = Eu, Gd, Tb). The structures of the complexes are characterized by X-ray diffraction (XRD) (CIF files CCDC nos. 2364040 (II), 2364041 (III), 2364042 (IV)).

About the authors

Yu. O. Edilova

Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences

Email: dnbazhin@gmail.com
Russian Federation, Yekaterinburg

Yu. S. Kudyakova

Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences

Email: dnbazhin@gmail.com
Russian Federation, Yekaterinburg

P. A. Slepukhin

Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences; Ural Federal University named after the first President of Russia B.N. Yeltsin

Email: dnbazhin@gmail.com
Russian Federation, Yekaterinburg; Yekaterinburg

M. S. Valova

Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences

Email: dnbazhin@gmail.com
Russian Federation, Yekaterinburg

V. I. Saloutin

Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences

Email: dnbazhin@gmail.com
Russian Federation, Yekaterinburg

D. N. Bazhin

Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences; Ural Federal University named after the first President of Russia B.N. Yeltsin

Author for correspondence.
Email: dnbazhin@gmail.com
Russian Federation, Yekaterinburg; Yekaterinburg

References

  1. Binnemans K. // Chem. Rev. 2009. V. 109. № 9. P. 4283.
  2. Nehra K., Dalal A., Hooda A. et al. // J. Mol. Struct. 2022. V. 1249. P. 131531.
  3. Bünzli J.-C.G. // Coord. Chem. Rev. 2015. V. 293–294. P. 19.
  4. Saloutin V.I., Edilova Y.O., Kudyakova Y.S. et al. // Molecules. 2022. V 27. P. 7894.
  5. Biju S., Eom Y.K., Bünzli J.-C.G. et al. // J. Mater. Chem. C. 2013. V 1. P. 6935.
  6. Reid B.L., Stagni S., Malicka J.M. et al. // Chem. Eur. J. 2015. V. 21. P. 18354.
  7. Hasegawa Y., Tsuruoka S., Yoshida T. et al. // J. Phys. Chem. A. 2008. V.112. P. 803.
  8. Varaksina E.A., Taydakov I.V., Ambrozevich S.A. et al. // J. Lumin. 2018. V. 196. P 161.
  9. Korshunov V.M., Kiskin M.A., Taydakov I.V. // J. Lumin. 2022. V. 251. P. 119235.
  10. Varaksina E.A., Kiskin M.A., Lyssenko K.A. et al. // Phys. Chem. Chem. Phys. 2021. V. 23. P. 25748.
  11. Kudyakova Y.S., Bazhin D.N., Burgart Y.V. et al. // Mendeleev Commun. 2016. V. 26. P. 54.
  12. Metlina D.A., Metlin M.T., Ambrozevich S.A. et al. // J. Lumin. 2018. V. 203. P. 546.
  13. Пугачев Д.Е., Кострюкова Т.С., Ивановская Н.Г. и др. // Журн. общ. химии. 2019. Т. 89. С. 779 (Pugachyov D.E., Kostryukova T.S., Ivanovskaya N.G. et al. // Russ. J. Gen. Chem. 2019. V. 89. P. 965). https://doi.org/10.1134/S0044460X19050160
  14. Sukhikh T.S., Kolybalov D.S., Pylova E.K. et al. // New J. Chem. 2019. V. 43. P. 9934.
  15. Melo S., Castro G.P., Gonçalves S.M.C. // Inorg. Chem. 2019. V. 58. P. 3265.
  16. Galán L.A., Reid B.L., Stagni S. et al. // Inorg. Chem. 2017. V. 56. P. 8975.
  17. Kang J.-S., Jeong Y.-K., Shim Y.S. et al. // J. Lumin. 2016. V. 178. P. 368.
  18. Reid B.L., Stagni S., Malicka J.M. et al. // Chem. Commun. 2014. V. 50. P. 11580.
  19. Biju S., Freire R.O., Eom Y.K. et al. // Inorg. Chem. 2014. V. 53. P. 8407.
  20. Smirnova K.A., Edilova Y.O., Kiskin M.A. et al. // Int. J. Mol. Sci. 2023. V. 24. 9778.
  21. Bazhin D.N., Kudyakova Y.S., Bogomyakov A.S. et al. // Inorg. Chem. Front. 2019. V. 6. P. 40.
  22. Кудякова Ю.С., Слепухин П.А., Валова М.С. и др. // Коорд. химия. 2020. Т. 46. С. 485 (Kudyakova Y.S., Slepukhin P.A., Valova M.S. et al. // Russ. J. Coord. Chem. 2020.V. 46. P. 545). https://doi.org/10.1134/S1070328420070027
  23. Kudyakova Y.S., Slepukhin P.A., Valova M.S. et al. // Eur. J. Inorg. Chem. 2020. V. 2020. P. 523.
  24. Кудякова Ю.С., Слепухин П.А., Ганебных И.Н. и др. // Коорд. химия. 2022. Т. 47. С. 245 (Kudyakova Y.S., Slepukhin P.A., Ganebnykh I.N. et al. // Russ. J. Coord. Chem. 2021. V. 47. P. 280). https://doi.org/10.1134/S1070328421040059
  25. Kudyakova Y.S., Slepukhin P.A., Valova M.S. et al. // J. Mol. Struct. 2021. V. 1226. P. 129331.
  26. Бажин Д.Н., Кудякова Ю.С., Эдилова Ю.О. и др. // Изв. АН. Сер. хим. 2022. Т. 71. № 7. С. 1321 (Bazhin D.N., Kudyakova Y.S., Edilova Y.O. et al. // Russ. Chem. Bull. 2022. V. 71. P. 1321). https://doi.org/10.1007/s11172-022-3539-6
  27. Krisyuk V.V., Urkasym Kyzy S., Rybalova T.V. et al. // J. Coord. Chem. 2018. V 71. P. 2194.
  28. Edilova Y.O., Osipova E.A., Slepukhin P.A. et al. // Int. J. Mol. Sci. 2023. V. 24. P. 14234.
  29. Binnemans K. // Coord. Chem. Rev. 2015. V. 295. P. 1.
  30. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339.
  31. Sheldrick G.M. // Acta Crystallogr. A. 2008. V. 64. P. 112.
  32. Casanova D., Llunell M., Alemany P. et al. // Chem. Eur. J. 2005. V. 11. P. 1479.
  33. Llunell M., Casanova D., Cirera J. et al. SHAPE. Version 2.1. Barcelona (Spain): Electronic Structure Group Univ. de Barcelona, 2013.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Российская академия наук