Luminescence properties of heterometallic lanthanide complexes based on lithium β-diketonate bearing tert-butyl and acetal group

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Nonsymmetrical lithium β-diketonate (LiL) containing tert-butyl and acetal substituents at the dicarbonyl cage has been synthesized for the first time and is structurally characterized (CIF file CCDC no. 2364039 (I)). The reactions of functional lithium β-diketonate with salts of trivalent rare-earth metals in methanol afford heterobinuclear complexes [(LnL3)(LiL)(MeOH)] (Ln = Eu, Gd, Tb). The structures of the complexes are characterized by X-ray diffraction (XRD) (CIF files CCDC nos. 2364040 (II), 2364041 (III), 2364042 (IV)).

作者简介

Yu. Edilova

Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences

Email: dnbazhin@gmail.com
俄罗斯联邦, Yekaterinburg

Yu. Kudyakova

Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences

Email: dnbazhin@gmail.com
俄罗斯联邦, Yekaterinburg

P. Slepukhin

Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences; Ural Federal University named after the first President of Russia B.N. Yeltsin

Email: dnbazhin@gmail.com
俄罗斯联邦, Yekaterinburg; Yekaterinburg

M. Valova

Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences

Email: dnbazhin@gmail.com
俄罗斯联邦, Yekaterinburg

V. Saloutin

Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences

Email: dnbazhin@gmail.com
俄罗斯联邦, Yekaterinburg

D. Bazhin

Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences; Ural Federal University named after the first President of Russia B.N. Yeltsin

编辑信件的主要联系方式.
Email: dnbazhin@gmail.com
俄罗斯联邦, Yekaterinburg; Yekaterinburg

参考

  1. Binnemans K. // Chem. Rev. 2009. V. 109. № 9. P. 4283.
  2. Nehra K., Dalal A., Hooda A. et al. // J. Mol. Struct. 2022. V. 1249. P. 131531.
  3. Bünzli J.-C.G. // Coord. Chem. Rev. 2015. V. 293–294. P. 19.
  4. Saloutin V.I., Edilova Y.O., Kudyakova Y.S. et al. // Molecules. 2022. V 27. P. 7894.
  5. Biju S., Eom Y.K., Bünzli J.-C.G. et al. // J. Mater. Chem. C. 2013. V 1. P. 6935.
  6. Reid B.L., Stagni S., Malicka J.M. et al. // Chem. Eur. J. 2015. V. 21. P. 18354.
  7. Hasegawa Y., Tsuruoka S., Yoshida T. et al. // J. Phys. Chem. A. 2008. V.112. P. 803.
  8. Varaksina E.A., Taydakov I.V., Ambrozevich S.A. et al. // J. Lumin. 2018. V. 196. P 161.
  9. Korshunov V.M., Kiskin M.A., Taydakov I.V. // J. Lumin. 2022. V. 251. P. 119235.
  10. Varaksina E.A., Kiskin M.A., Lyssenko K.A. et al. // Phys. Chem. Chem. Phys. 2021. V. 23. P. 25748.
  11. Kudyakova Y.S., Bazhin D.N., Burgart Y.V. et al. // Mendeleev Commun. 2016. V. 26. P. 54.
  12. Metlina D.A., Metlin M.T., Ambrozevich S.A. et al. // J. Lumin. 2018. V. 203. P. 546.
  13. Пугачев Д.Е., Кострюкова Т.С., Ивановская Н.Г. и др. // Журн. общ. химии. 2019. Т. 89. С. 779 (Pugachyov D.E., Kostryukova T.S., Ivanovskaya N.G. et al. // Russ. J. Gen. Chem. 2019. V. 89. P. 965). https://doi.org/10.1134/S0044460X19050160
  14. Sukhikh T.S., Kolybalov D.S., Pylova E.K. et al. // New J. Chem. 2019. V. 43. P. 9934.
  15. Melo S., Castro G.P., Gonçalves S.M.C. // Inorg. Chem. 2019. V. 58. P. 3265.
  16. Galán L.A., Reid B.L., Stagni S. et al. // Inorg. Chem. 2017. V. 56. P. 8975.
  17. Kang J.-S., Jeong Y.-K., Shim Y.S. et al. // J. Lumin. 2016. V. 178. P. 368.
  18. Reid B.L., Stagni S., Malicka J.M. et al. // Chem. Commun. 2014. V. 50. P. 11580.
  19. Biju S., Freire R.O., Eom Y.K. et al. // Inorg. Chem. 2014. V. 53. P. 8407.
  20. Smirnova K.A., Edilova Y.O., Kiskin M.A. et al. // Int. J. Mol. Sci. 2023. V. 24. 9778.
  21. Bazhin D.N., Kudyakova Y.S., Bogomyakov A.S. et al. // Inorg. Chem. Front. 2019. V. 6. P. 40.
  22. Кудякова Ю.С., Слепухин П.А., Валова М.С. и др. // Коорд. химия. 2020. Т. 46. С. 485 (Kudyakova Y.S., Slepukhin P.A., Valova M.S. et al. // Russ. J. Coord. Chem. 2020.V. 46. P. 545). https://doi.org/10.1134/S1070328420070027
  23. Kudyakova Y.S., Slepukhin P.A., Valova M.S. et al. // Eur. J. Inorg. Chem. 2020. V. 2020. P. 523.
  24. Кудякова Ю.С., Слепухин П.А., Ганебных И.Н. и др. // Коорд. химия. 2022. Т. 47. С. 245 (Kudyakova Y.S., Slepukhin P.A., Ganebnykh I.N. et al. // Russ. J. Coord. Chem. 2021. V. 47. P. 280). https://doi.org/10.1134/S1070328421040059
  25. Kudyakova Y.S., Slepukhin P.A., Valova M.S. et al. // J. Mol. Struct. 2021. V. 1226. P. 129331.
  26. Бажин Д.Н., Кудякова Ю.С., Эдилова Ю.О. и др. // Изв. АН. Сер. хим. 2022. Т. 71. № 7. С. 1321 (Bazhin D.N., Kudyakova Y.S., Edilova Y.O. et al. // Russ. Chem. Bull. 2022. V. 71. P. 1321). https://doi.org/10.1007/s11172-022-3539-6
  27. Krisyuk V.V., Urkasym Kyzy S., Rybalova T.V. et al. // J. Coord. Chem. 2018. V 71. P. 2194.
  28. Edilova Y.O., Osipova E.A., Slepukhin P.A. et al. // Int. J. Mol. Sci. 2023. V. 24. P. 14234.
  29. Binnemans K. // Coord. Chem. Rev. 2015. V. 295. P. 1.
  30. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339.
  31. Sheldrick G.M. // Acta Crystallogr. A. 2008. V. 64. P. 112.
  32. Casanova D., Llunell M., Alemany P. et al. // Chem. Eur. J. 2005. V. 11. P. 1479.
  33. Llunell M., Casanova D., Cirera J. et al. SHAPE. Version 2.1. Barcelona (Spain): Electronic Structure Group Univ. de Barcelona, 2013.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Российская академия наук, 2025