Influence of acoustic background on the choice of visual stimuli by children of early preschool age

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The work continues a cycle of psychophysical experiments on studying the features of visual stimuli recognition of different colors and different sizes by children of early preschool age. For measurements, a game method of visual choice using a touch screen monitor in quiet conditions and under an acoustic background – a recording of noise in a kindergarten group, including children’s spoken language (“children’s polyphony”). The noise was fed through headphones, its intensity was 45 dB (the level of spoken language). The study involved children aged 3–4 years (n = 31) attending a city kindergarten. All children had normal vision and hearing. The results confirmed previously obtained data that children of this age are significantly worse at choosing from geometric figures by the feature “color” than by the feature “size” (number of errors). The introduction of the noise of “children’s polyphony” does not change this ratio, but significantly increases the number of attempts to solve and the time of the sensorimotor response (p<0.01), especially when choosing by the “color” feature (p<0.001). Additional behavioral analysis made it possible to identify a subgroup of conditionally “anxious” children, whose visual choice indicators, especially against the background of acoustic interference, were 3–4 times worse than the other test participants. When comparing the results with the data of the previous study, it was found that adult conversational speech is a stronger perceptual interference compared to the noise of “children’s polyphony”. This can be explained by the adaptation of children to the noise background of the kindergarten, but requires continuation of the study with a more detailed analysis of the noise characteristics, as well as the psychological profile of children and their anxiety level. The results are of practical importance for the organization of learning processes, including correctional work in the field of special education.

Full Text

Restricted Access

About the authors

Т. G. Kuznetsova

Pavlov Institute of Physiology of the Russian Academy of Sciences

Author for correspondence.
Email: dr.tamara.kuznetsova@gmail.com
Russian Federation, 6, Makarov Emb., Saint Petersburg, 199034

М. L. Struzhkin

Pavlov Institute of Physiology of the Russian Academy of Sciences

Email: dr.tamara.kuznetsova@gmail.com
Russian Federation, 6, Makarov Emb., Saint Petersburg, 199034

I. Yu. Golubeva

Pavlov Institute of Physiology of the Russian Academy of Sciences

Email: dr.tamara.kuznetsova@gmail.com
Russian Federation, 6, Makarov Emb., Saint Petersburg, 199034

E. A. Rodina

Pushkin Leningrad State University

Email: dr.tamara.kuznetsova@gmail.com
Russian Federation, 10, Peterburgskoe Hwy, Pushkin, Saint Petersburg, 196605

E. A. Ogorodnikova

Pavlov Institute of Physiology of the Russian Academy of Sciences

Email: dr.tamara.kuznetsova@gmail.com
Russian Federation, 6, Makarov Emb., Saint Petersburg, 199034

References

  1. Bushinskaya Ye.A. Ispol’zovaniye tsvetoterapii v logopedicheskoy rabote s doshkol’nikami s obshchim nedorazvitiyem rechi tret’yego urovnya i nedorazvitiyem proizvol’nogo vnimaniya v usloviyakh inklyuzivnogo obrazovaniya [Use of color therapy in speech therapy work with preschoolers with general speech underdevelopment of the third level and underdevelopment of voluntary attention in the context of inclusive education]. Kontsept. 2013. V.3. P.1241-1245. URL: http://e-koncept.ru/2013/53251.htm (in Russian)
  2. Golubeva I.Yu., Tikhonravov D.L., Voytenkov V.B., Pashkov A.Yu., Pervunina T.M. Sravnitel’noye issledovaniye formirovaniya ponyatiy s ispol’zovaniyem real’nykh geometricheskikh figur i konturnykh izobrazheniy v kachestve stimulov u detey v vozraste 4–5 let [Comparative study of the formation of concepts using real geometric figures and contour images as stimuli in children aged 4–5 years]. Translyatsionnaya meditsina. 2020. 7 (5): 109-118. doi: 10.18705/2311-4495-2020-7-5-109-118 (in Russian)
  3. Yelyutina D.N. Negativnoye vliyaniye shuma na uspevayemost’ mladshego shkol’nika [Negative influence of noise on the academic performance of primary school students]. Start v nauke. 2017. №3. P.82-86. (in Russian)
  4. Zashchirinskaya O.V., Skuratova K.A., Shelepin Ye.Yu. Spetsifika glazodvigatel’noy aktivnosti detey pri chtenii tekstov raznykh vizual’nykh formatov [Specificity of children’s eye movement activity when reading texts of different visual formats]. Sibirskiy psikhologicheskiy zhurnal. 2019. V.73. P.141-158. doi: 10.17223/17267080/73/9 (in Russian)
  5. Kornev A.N., Lyublinskaya V.V., Stolyarova E.I. Selektivnoye slukhovoye vnimaniye u detey doshkol’nogo vozrasta [Selective auditory attention in preschool children]. Eksperimental’naya psikhologiya. 2012. V.5. №4. P.18-31. (in Russian)
  6. Kuznetsova T.G., Struzhkin M.L. Raspoznavaniye i vybor geometricheskikh zritel’nykh stimulov, pred”yavlyayemykh na ekrane monitora, det’mi 3-4 let [Recognition and selection of geometric visual stimuli presented on a monitor screen by children aged 3-4 years]. Teoreticheskaya i eksperimental’naya psikhologiya. 2022. V.15. №4. P.77-89. doi: 10.24412/20730861202247789 (in Russian)
  7. Kuznetsova T.G., Struzhkin M.L., Golubeva I.Yu. Osobennosti opoznavaniya izobrazheniy figur raznogo tsveta i razmera det’mi 3-4 let s ispol’zovaniyem shumovogo fona [Peculiarities of recognition of images of figures of different colors and sizes by children aged 3-4 years using background noise]. Psikhologo-pedagogicheskiye issledovaniya. 2024. V.16. №1. P.111-120. DOI: https://doi.org/10.17759/psyedu.2024160107 (in Russian)
  8. Maksimov V.V. Transformatsii tsveta pri izmenenii osveshcheniya [Color transformations with changing illumination]. M.: Nauka. 1984. (in Russian)
  9. Marakushina I.G., Pavozkova O.Ye., Polyashova N.V. Dinamika rabotosposobnosti i pomekhoustoychivosti vnimaniya u detey mladshego shkol’nogo vozrasta v protsesse obucheniya [Dynamics of working capacity and noise immunity of attention in children of primary school age in the learning process]. Problemy sovremennogo pedagogicheskogo obrazovaniya. 2019. P.193-294. (in Russian)
  10. Nikolayev P.P., Rozhkova G.I. Analiz kontseptsii A.L. Yarbusa o roli slepoy setchatki v tsvetovospriyatii [Analysis of the concept of A.L. Yarbus on the role of the blind retina in color perception]. Sensornye sistemy. 2017. V.31. №2. P.116-138. (in Russian)
  11. Nishcheva N.V. Raznotsvetnyye skazki: tsikl zanyatiy po razvitiyu rechi, formirovaniyu tsvetovospriyatiya i tsvetorazlicheniya u detey doshkol’nogo vozrasta (uchebno-metodicheskoye posobiye) [Multicolored fairy tales: a series of lessons on speech development, formation of color perception and color distinction in preschool children (educational and methodological manual)] SPb.: Detstvo-press, 1999. 64 p. (in Russian)
  12. Nyuberg N.D. Paradoksy tsvetovogo zreniya [Paradoxes of color vision]. Priroda. 1960. №8. P.53–59. (in Russian)
  13. Osokina Ye.S., Chernyshev B.V., Chernysheva Ye.G. Svyaz’ selektivnogo slukhovogo vnimaniya s individual’nymi osobennostyami [The relationship of selective auditory attention with individual characteristics]. Zhurnal Vysshey shkoly ekonomiki. 2011. V.8. №3. P.121-129. (in Russian)
  14. Romanov S.G., Goncharov O.A. Vozrastnyye osobennosti kategorial’nogo vospriyatiya fokal’nykh i pogranichnykh tsvetov v tsentral’nykh i perifericheskikh polyakh zreniya [Age-related features of categorical perception of focal and border colors in the central and peripheral fields of vision]. Psikhologicheskiye issledovaniya. 2020. V.13. №74. doi: 10.54359/ps.v13i74.165 (in Russian)
  15. Sokolov Ye.N. Vospriyatiye i uslovnyy refleks [Perception and conditioned reflex]. M.: Izd-vo MGU, 1958. 330 p. (in Russian)
  16. Struzhkin M.L., Kuznetsova T.G., Godynskaya N.V. Razrabotka i aprobatsiya metodiki raspoznavaniya zritel’nykh stimulov s ispol’zovaniyem tsifrovykh tekhnologiy u detey doshkol’nogo vozrasta [Development and testing of a method for recognizing visual stimuli using digital technologies in preschool children]. Vestnik Severo-Vostochnogo Federal’nogo Universiteta. Seriya “Pedagogika. Psikhologiya. Filosofiya”. 2020. №4(20). P.65-68. (in Russian)
  17. Cherenkova L.V., Sokolova L.V. Osobennosti invariantnogo opoznaniya zritel’nogo izobrazheniya u detey doshkol’nogo vozrasta s tipichnym i atipichnym razvitiyem [Features of invariant recognition of visual images in preschool children with typical and atypical development]. Fiziologiya cheloveka. 2016. V.42. №3. P.74-81. doi: 10.7868/S0131164616010069 (in Russian)
  18. Yarbus A.L. O rabote zritel’noy sistemy cheloveka. II. Tsvet [On the work of the human visual system. II. Color]. Biofizika.1975. V.20. №6. P.1099-1104. (in Russian)
  19. Anderson J.R., Kuroshima H., Fujita K. Observational learning in capuchin monkeys: a video deficit effect. J. Exp. Psychol. 2017. V. 70. P. 1254–1262. doi: 10.1080/17470218.2016.1178312
  20. Baddeley A. Working memory: looking back and looking forward. Nature reviews neuroscience. 2003. №.4. P.829-839. DOI: https://doi.org/10.1038/nrn1201
  21. Bethell E.J., Khan W., Hussain A. A deep transfer learning model for head pose estimation in rhesus macaques during cognitive tasks: Towards a nonrestraint noninvasive 3Rs approach. Applied Animal Behaviour Science. 2022. V.255. P. 105708.
  22. Brecht K.F., Ostojić L., Legg E.W., Clayton N.S. Difficulties when using video playback to investigate social cognition in California scrub-jays (Aphelocoma californica). Peer J. 2018. V. 6. P. e4451. doi: 10.7717/peerj.4451
  23. Connolly D., Dockrell J., Shield B., Conetta R., Mydlarz C., Cox T. The effects of classroom noise on the reading comprehension of adolescents. The Journal of the Acoustical Society of America. 2019. V. 145. P.372-381. DOI: https://doi.org/10.1121/1.5087126
  24. Davis M., Parisi T., Gendelman D.S., Tischler M.D., Kehne J.H. Habituation and sensitization of electrically elicited “startle” reflexes. Science. 1982. V. 218. P. 688-689.
  25. Farsi A., Pirian F. The Effect of Perceptual-Motor Training and Mindfulness on Performance and Working Memory in Children with Attention Deficit Hyperactivity Disorder. Sport Psychology Studies. 2023. Available at: https://spsyj.ssrc.ac.ir/article_3593.html doi: 10.22089/spsyj.2020.8905.1961
  26. Franklin A., Sowden P., Notman L., Gonzalez-Dixon M., West D., Alexander I., Loveday S., White A. Reduced chromatic discrimination in children with autism spectrum disorders. Developmental Science. 2010. V.1(13). P. 188-200. doi: 10.1111/j.1467-7687.2009.0086
  27. Ghodrati S., Nejad M.S.A., Sharifian M., Nejati V. Inhibitory control training in preschool children with typical development: an RCT study. Early Child Development and Care. 2021. V.191(13). P.1-10. doi: 10.1080/03004430.2019.1691544
  28. Goodale M.A., Milner A.D. Separate visual pathways for perception and action. Trends in Neurosciences. 1992. V. 15. P.21-26. doi: 10.1016/01662236(92)90344-8
  29. Ijlal M. F. M., Chotijah U. Color recognition educational game using fisher-yates for early childhood potential development. Jurnal Inovtek Polbeng Seri Informatika. 2022. V.7(2). P.267-277.
  30. Jones P.R., Landin A., McLean M.Z. et al. Efficient visual information sampling develops late in childhood. Journal of Experimental Psychology General. 2019. V.1148(7). P.1138-1152. doi: 10.1037/xge0000629
  31. Livingstone M.S., Hubel D.H. Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J. Neurosci. 1987. V. 7. P. 3416–3468. doi: 10.1523/JNEUROSCI.07-11-03416.1987
  32. Mareschal D., Johnson M.H. The “what” and “where” of object representations in infancy. Cognition. 2003. V. 88. P.259-276. doi: 10.1016/s0010-277(03)00039-8
  33. Mealings K. Classroom acoustics and cognition: A review of the effects of noise and reverberation on primary school children’s attention and memory. Building Acoustics. 2022. V.29(3). P.401-431.
  34. Nejati V., Derakhshan Z., Mohtasham A. The effect of comprehensive working memory training on executive functions and behavioral symptoms in children with attention deficit-hyperactivity disorder (ADHD). Asian Journal of Psychiatry. 2023. V.81. doi: 10.1016/j.ajp.2023.103469
  35. Papadakis S., Kalogiannakis M. Mobile learning applications in early childhood education. Information Science Reference/IGI Global. 2020. DOI: https://doi.org/10.4018/978-1-7998-1486-3
  36. PapMacrides E., Miliou O., Angeli C. Programming in early childhood education: A systematic review. International Journal of Child-Computer Interaction. 2022. V.32. P.100396
  37. Pinna B., Deiana K. On the Role of Color in Reading and Comprehension Tasks in Dyslexic Children and Adults. i-Perception. 2018. V.9(3). P. 1–22. doi: 10.1177/2041669518779098
  38. Pylypiuk K.M. Prevention and correction of pedagogical neglect based on research materials of German universities. Scientific Bulletin of Mukachevo State University. Series: “Pedagogy and Psychology”. 2022. V.8 (1). P.78-85.
  39. Richmond S., Kirk H., Gaunson T., et al. Digital cognitive training in children with attention-deficit/ hyperactivity disorder: a study protocol of a randomized controlled trial. BMJ Open. 2022. V.12. doi: 10.1136/bmjopen-2021-055385
  40. Rodríguez D.C.L., Lee G.M., Bushnell B.N., Majaj N.J., Movshon J.A., Kiorpes L. Development of radial frequency pattern perception in macaque monkeys. Journal of vision. 2024. V. 24(6). doi: 10.1167/jov.24.6.6
  41. Samson A.D., Rohr C.S., Park S., Arora A., Ip A., Tansey R. et al. Videogame exposure positively associates with selective attention in a cross-sectional sample of young children. PLoS ONE. 2021. V. 16(9). doi: 10.1371/journal.pone.0257877
  42. Shangguan X., Wu J., Wu Y., Chen C. Design and Evaluation of a School-based Sustained Attention Training Program with Parental Involvement for Preschoolers in Rural China. Early Education and Development. 2022. doi: 10.1080/10409289.2022.2126265
  43. Suddendorf T., Simcock G., Nielsen M. Visual self-recognition in mirrors and live videos: evidence for a developmental asynchrony. Cogn. Dev. 2007. V. 22. P. 185-196. doi: 10.1016/j.cogdev.2006.09.003
  44. Sullivan, J.R., Osman, H., Schafer, E.C. The effect of noise on the relationship between auditory working memory and comprehension in school-age children. Journal of Speech, Language, and Hearing Research. 2015. V.58. P.1043-1051. DOI: https://doi.org/10.1044/2015_JSLHR-H-14-0204
  45. Trifunović A., Čičević S., Ivanišević T., Simović S., Mitrović S. Education of children on the recognition of geometric shapes using new technologies. Education Science and Management. 2024. V.2(1). P.1-9. DOI: https://doi.org/10.56578/esm020101
  46. Troseth G.L. TV guide: two-year-old children learn to use video as a source of information. Dev. Psychol. 2003. V. 39. P. 140-150. doi: 10.1037/0012-1649.39.1.140
  47. Troseth G.L., DeLoache J.S. The medium can obscure the message: young children’s understanding of video. Child Dev. 1998. V. 69. P. 950-965. doi: 10.1111/j.1467-8624.1998.tb06153.x

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Oscillogram of the noise of ‘children's polyphony’ and distribution of its spectrum in the prostrate of two basic speech formants - F1 and F2.

Download (93KB)
3. Fig. 2. Average number of errors and attempts in selecting the target visual stimulus by the attributes ‘colour’ and ‘size’. Denotations: ordinate axis - the average number (n) of errors made in selecting informative image features (left) and attempts until the correct choice is reached (right). Denotations: *, **, *** - different levels of significance of differences p < 0.05; p < 0.01; p < 0.005, respectively.

Download (15KB)
4. Fig. 3. Average time spent on selecting and selecting visual stimuli by the attributes of "colour" and "size" in conditional subgroups of children: "calm" (a) and "anxious" (b). Ordinate axis: target search time (in ms). Markings: different levels of significance of differences ** - p < 0.01; *** - p < 0.001 (a) and p < 0.002 (b).

Download (16KB)

Copyright (c) 2025 Russian Academy of Sciences