Development of atomic layer deposition technological platform for the synthesis of micro- and nanoelectronics materials

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This work presents the results of designing, constructing and testing the atomic layer deposition (ALD) platform for the synthesis of various semiconductor, dielectric, metallized and barrier thin-film structures with a thickness of < 100 nm. This ALD platform can be used in the field of micro- and nanoelectronics, with the possibility of in situ monitoring of mass and thickness growth processes with an accuracy of 0.3 ng/cm2 and 0.037 Å/cycle, respectively. In this ALD platform, the number of imported components is minimized due to the use of electronics and vacuum fittings from domestic manufacturers, which in turn will significantly reduce the cost of this type of installation and make atomic layer deposition technology available to most scientific and educational organizations in Russia.

Texto integral

Acesso é fechado

Sobre autores

R. Amashaev

Institution of Higher Education "Dagestan State University"; ALD TECHNOLOGIES Limited Liability Company

Autor responsável pela correspondência
Email: rustam.amashaev@gmail.com
Rússia, Makhachkala; Makhachkala

Sh. Isubgadzhiev

Institution of Higher Education "Dagestan State University"; ALD COATING TECHNOLOGIES Limited Liability Company

Email: rustam.amashaev@gmail.com
Rússia, Makhachkala; Kilyatl

M. Rabadanov

Institution of Higher Education "Dagestan State University"

Email: rustam.amashaev@gmail.com
Rússia, Makhachkala

I. Abdulagatov

Institution of Higher Education "Dagestan State University"

Email: rustam.amashaev@gmail.com
Rússia, Makhachkala

Bibliografia

  1. Robertson J., Wallace R. High-K materials and metal gates for CMOS applications // Materials Science and Engineering: R: Reports. 2015. V. 88. P. 1–41.
  2. Choi J.H., Mao Y., Chang J.P. Development of hafnium based high-k materials – A review // Materials Science and Engineering: R: Reports. 2015. V. 72. № 6. P. 97–136.
  3. Yeoh A., Madhavan A., Kybert N. et al. Interconnect Stack using Self-Aligned Quad and Double Patterning for 10nm High Volume Manufacturing // 2018 IEEE International Interconnect Technology Conference (IITC). 2018. P. 144–147.
  4. Johnson R.W., Hultqvist. A., Bent S.F. A brief review of atomic layer deposition: from fundamentals to applications // Materials Today. 2014. V. 17. № 5. P. 236–246.
  5. Malygin A.A., Drozd V.E., Malkov A.A., Smirnov V.M. From V. B. Aleskovskii’s “Framework” Hypothesis to the Method of Molecular Layering/Atomic Layer Deposition // Chemical Vapor Deposition. 2015. V. 21. № 10-11-12. P. 216–240.
  6. Suntola T. Atomic Layer Epitaxy // Materials Science Reports. 1989. Vol. 4. Р. 261–312.
  7. Koltsov S.I. Synthesis of solids by molecular layering: diss. dokt. chemistry. Leningrad. 1971. 383 p.
  8. Koltsov S.I. Study of the degree of hydration of the surface of single-crystal silicon at different temperatures // Koltsov S.I., Drozd V.E., Aleskovskiy V.B. / Ed. USSR Reports of the Academy of Sciences. 1976. Vol. 229. No. 5. Pp. 1145–1147.
  9. Lee Y-S., Choi D-W., Shong B., Oh S., Park J-S. Low temperature atomic layer deposition of SiO2 thin films using di-isopropylaminosilane and ozone // Ceramics International. 2017. V. 43, № 2. P. 2095–2099.
  10. Wang X., Ghosh S.K., Afshar-Mohajer M., Zhou H., Liu Y., Han X., Cai J., Zou M., Meng X. Atomic layer deposition of zirconium oxide thin films // Journal of Materials Research. 2020. V. 35. № 7. P. 804–812.
  11. Gieraltowska S., Wachnicki L., Dluzewski P., Witkowski B.S., Godlewski M., Guziewicz E. Atomic Layer Deposition of HfO2 Films Using TDMAH and Water or Ammonia Water // Materials. 2023. V. 16. № 11. P. 4077.
  12. Groner M.D., Fabreguette F.H., Elam J.W., George S.M. Low-Temperature Al2O3 Atomic Layer Deposition Chemistry of Materials. 2004. V. 16. № 4. P. 639–645.
  13. Amashaev R.R., Kurbanov M.M., Khalilov R.Sh. Software package for automation of atomic layer deposition processes // Certificate of registration of computer program. No. 2024612675, dated 01/09/2024.
  14. Wind R.A., George S.M. Quartz Crystal Microbalance Studies of Al2O3 Atomic Layer Deposition Using Trimethylaluminum and Water at 125 °C // The Journal of Physical Chemistry A. 2010. V. 114. № 3. P. 1281–1289.
  15. Amashaev R.R., Alikhanov N. M-R., Ismailov A.M., Abdulagatov I.M. Synthesis of Ultrathin Heteroepitaxial 3C-SiC films by The Thermal Treatment of Molecular Layer Deposition Polyamide Films on Si // Journal of Vacuum Science and Technology. 2022. Vol. 40. № 5. P. 052401–052401.
  16. Steiner J., Schultheiß J., Wang S., Wellmann P.J. Fabrication of SiC-on-Insulator (SiCOI) Layers by Chemical Vapor Deposition of 3C-SiC on Si-in-Insulator Substrates at Low Deposition Temperatures of 1120 °C // Crystals. 2023. V. 13. № 11. P. 1590.
  17. Yao J., Li A., Liu Y., Hu Z., Li M., Yang K., Zhang J., Chen J., Zhang M., Guo Y. SiC-on-insulator based lateral power device and it’ s analytical models // Results in Physics. V. 58. 2024. P. 107477.
  18. Li J., Zhang Q., Wang J. et al. An integrated 3C-silicon carbide-on-insulator photonic platform for nonlinear and quantum light sources // Commun Physics. 2024. V. 7. № 125.
  19. Vinod K.N., Zorman C.A., Mehregany M. A novel SiC on insulator technology using wafer bonding // Proceedings of International Solid State Sensors and Actuators Conference (Transducers ‘97). 1997. V. 1. P. 653–656.
  20. Lukin D.M., Dory C., Guidry M.A. et al. 4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics // Nature Photonics. 2020. V. 14. P. 330–334.
  21. Amashaev R.R., Isubgadzhiev Sh.M., Faradzhev Sh.P., Buzin A.V., Akhmedova P.M., Abdulagatov I.M. Method for Improving the Growth and Adhesion of Copper Nanofilms on Silicon Substrates Using Molecular Layer Deposition Technology: Patent. No. RU 2800189 C1, dated 11/21/2022.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Digital model of the reactor (a), models of heat distribution along the planes when the heater temperature is set to 180 °C (b, c), isothermal distribution of the temperature of the outer walls of the reactor (d), temperature distribution at the base of the reactor (d), isothermal distribution of temperature in the cross-section (e)

Baixar (968KB)
3. Fig. 2. Modeling the nature of nitrogen gas flow in a reactor (vacuum chamber) and determining the nitrogen flow rate in different areas

Baixar (425KB)
4. Fig. 3. Modeling of nitrogen gas density distribution in the reactor

Baixar (160KB)
5. Fig. 4. (a) Digital model of the atomic layer deposition technology platform, (b) side view of the prototype of the atomic layer deposition technology platform

Baixar (714KB)
6. Fig. 5. Pressure surges in the software interface graph during the process of opening/closing pneumatic valves of the ASO technological platform

Baixar (566KB)
7. Fig. 6. A prototype of the atomic layer deposition technology platform with an installed FS-1 ellipsometer. The inset illustrates the precise centering of the beam in the detector entrance.

Baixar (543KB)
8. Fig. 7. (a) Linear graph of the increase in the Al2O3 film thickness, (b) mass increase for 6 cycles of Al(CH3)3 and H2O

Baixar (262KB)
9. Fig. 8. Cross-section of Si grooves produced using Bosch technology and coated with SiC films (formed by pyrolysis of 122 nm thick polyamide MLD film at 1300 °C) [15]

Baixar (383KB)
10. Fig. 9. SEM image of SiC on SOI substrate (a), distribution of elements C, Si, O (b, c, d)

Baixar (526KB)
11. Fig. 10. Scanning electron microscopy image of a sample of copper film on a silicon surface with an intermediate aluminum oxide layer in the cleavage [21]

Baixar (337KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025