ANALYSIS OF PROTEIN EXPRESSION OF PD-L1 IN MALIGNANT PLEURAL MESOTHELIOMA

Abstract

Malignant pleural mesothelioma is associated with poor prognosis and resistance to chemotherapy. This gives reason to search for as well new effective methods of treatment as predictive factors. Programmed cell death receptor PD-1 and its ligands PD-L1 and PD-L2 are the representatives of the system of the «immunologic checkpoint» whose main function is the regulation and modulation of immune response, the decrease of the immune cell damage in organs and tissues and also prevention running of an autoimmune process. Tumor cells are able to use a PD-1/PD-L1-signaling pathway to evade the immune system. The assessment of the level of expression of PD-L1 is regarded as a prognostic marker of the life expectancy, but also as a predictor of response to anti-PD-1/PD-L1 immunotherapy.

Full Text

Restricted Access

About the authors

Tatyana D. Karpenko

N.N. Blokhin National Medical Research Center of Oncology

Email: katan4ik@list.ru
Doctor of the Surgical Department № 13 of the Thoracal Abdominal Department ; Moscow, 115478, Russian Federation Moscow, 115478, Russian Federation

N. A Kozlov

N.N. Blokhin National Medical Research Center of Oncology

Moscow, 115478, Russian Federation

L. N Lubchenko

N.N. Blokhin National Medical Research Center of Oncology

Moscow, 115478, Russian Federation

L. E Rotobelskaya

N.N. Blokhin National Medical Research Center of Oncology

Moscow, 115478, Russian Federation

S. G Bagrova

N.N. Blokhin National Medical Research Center of Oncology

Moscow, 115478, Russian Federation

V. M Safronova

N.N. Blokhin National Medical Research Center of Oncology

Moscow, 115478, Russian Federation

K. K Laktionov

N.N. Blokhin National Medical Research Center of Oncology

Moscow, 115478, Russian Federation

M. B Bychkov

N.N. Blokhin National Medical Research Center of Oncology

Moscow, 115478, Russian Federation

References

  1. Ключагина Ю.И., Соколова З.А., Барышникова М.А. Роль рецептора PD1 и его лигандов PDL1 и PDL2 в иммунотерапии опухолей. Онкопедиатрия. 2017; 4(1): 49-55.
  2. Pardoll D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer. 2012; 12(4): 252-64.
  3. Swaika A., Hammond W.A., Joseph R.W. Current state of anti-PD-L1 and anti-PD-1 agents in cancer therapy. Mol. Immunol. 2015; 67(2 Pt A): 4-17.
  4. Боголюбова А.В., Ефимов Г.А., Друцкая М.С., Недоспасов С.А. Иммунотерапия опухолей, основанная на блокировке иммунологических контрольных «точек» («чекпойнтов»). Медицинская иммунология. 2015; 17(5): 395-406.
  5. Dong H., Strome S.E., Salomao D.R., et al. Tumorassociated B7-H1 promotes T-cell apoptosis: a potential mechanism of imne evasion. Nat. Med. 2002; 8(8): 793-800.
  6. Quezada S.A., Peggs K.S. Exploiting CTLA-4, PD-1 and PD-L1 to reactivate the host immune response against cancer. Br. J. Cancer. 2013; 108(8): 1560-5.
  7. Zeng J., Zhang X., Chen H., et al. Expression of programmed cell death-ligand 1 and its correlation with clinical outcomes in gliomas. Oncotarget. 2016; 7(8): 8944-55.
  8. Nishimura H., Nose M., Hiai H., et al. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity. 1999; 11(2): 141-51.
  9. Hamanishi J., Mandai M., Iwasaki M., Okazaki T., Tanada Y., Yamaguchi K., et al. Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc. Natl. Acad. Sci. USA. 2007; 104: 3360-5.
  10. Konishi J., Yamazaki K., Azuma M., Kinoshita I., Dosaka-Akita H., Nishimura M. B7-H1 expression on non-small cell lung cancer cells and its relationship with tumor-infiltrating lymphocytes and their PD-1 expression. Clin. Cancer. Res. 2004; 10: 5094-100.
  11. Ohigashi Y., Sho M., Yamada Y., Tsurui Y., Hamada K., Ikeda N., et al. Clinical significance of programmed death-1 ligand-1 and programmed death-1 ligand-2 expression in human esophageal cancer. Clin. Cancer. Res. 2005; 11: 2947-53.
  12. Parsa A.T., Waldron J.S., Panner A., Crane C.A., Parney I.F., Barry J.J., et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat. Med. 2007; 13: 84-8.
  13. Strome S.E., Dong H., Tamura H., Voss S.G., Flies D.B., Tamada K., et al. B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma. Cancer Res. 2003; 63(19): 6501-5.
  14. Thompson R.H., Gillett M.D., Cheville J.C., Lohse C.M., Dong H., Webster W.S., et al. Costimulatory B7-H1 in renal cell carcinoma patients: indicator of tumor aggressiveness and potential therapeutic target. Proc. Natl. Acad. Sci. USA. 2004; 101: 17174-9. doi: 10.1073/pnas.0406351101.
  15. Martini N., McCormack P.M., Bains M.S., Kaser L.R., Burt M.E., Hilaris B.S. Pleural mesothelioma. Ann Thorac. Surg. 1987; 43: 113-20.
  16. Van Meerbeeck J.P., Gaafar R., Manegold C., Van Klaveren R., Van Marck E., Vincent M., et al. Randomized phase III study of cisplatin with or without raltitrexed in patients with malignant pleural mesothelioma: an intergroup study of the European Organisation for Research and Treatment of Cancer Lung Cancer Group and the National Cancer Institute of Canada. J. Clin. Oncol. 2005; 23(28): 6881-9.
  17. Vogelzang N.J., Rusthoven J.J., Symanowski J., Denham C., Kaukel E., Ruffie P., et al. Phase III Study of Pemetrexed in Combination With Cisplatin Versus Cisplatin Alone in Patients With Malignant Pleural Mesothelioma. J. Clinical Oncol. 2003; 21(14): 2636-44.
  18. De Perrot M., Feld R., Cho J., Bezjak A., Anraku M., Burkes R., et al. Trimodality therapy with induction chemotherapy followed by extrapleural pneumonectomy and adjuvant high-dose hemithoracic radiation for malignant pleural mesothelioma. J. Clin. Oncol. 2009; 27(9): 141-8.
  19. Flores R.M.Induction chemotherapy, extrapleural pneumonectomy, andradiotherapy in the treatment of malignant pleural mesothelioma: the Memorial Sloan-Kettering experience. Lung. Cancer. 2005; 49 (Suppl 1): S71-4.
  20. Anraku M., Cunningham K.S., Yun Z., Tsao M.S., Zhang L., Keshavjee S., et al. Impact of tumor-infiltrating T cells on survival in patients with malignant pleural mesothelioma. J. Thorac. Cardiovasc. Surg. 2008; 135(4): 82-9.
  21. Jackaman C., Cornwall S., Lew A.M., Zhan Y., Robinson B.W., Nelson D.J. Local effector failure in mesothelioma is not mediated by CD4+ CD25+ T-regulator cells. Eur. Respir. J. 2009; 34(1):162-75.
  22. Leigh R.A, Webster I. Lymphocytic infiltration of pleural mesothelioma and its significance for survival. S. Afr. Med. J. 1982; 61(26): 1007-9.
  23. Yamada N., Oizumi S., Kikuchi E., Shinagawa N., Konishi-Sakakibara J., Ishimine A., et al. CD8+ tumorinfiltrating lymphocytes predict favorable prognosis in malignant pleural mesotheleioma after resection. Cancer Immunol Immunother. 2010; 59(10): 1543-9.
  24. Allen R.K. Apparent spontaneous complete regression of a multifocal malignant mesothelioma of the pleura. Med. J. Aust. 2007; 187(7): 413-5.
  25. Pilling J.E., Nicholson A.G., Harmer C., Goldstraw P. Prolonged survival due to spontaneous regression and surgical excision of malignant mesothelioma. Ann. Thorac. Surg. 2007; 83(1): 31-5.
  26. Robinson B.W., Robinson C., Lake R.A. Localised spontaneous regression in mesothelioma-possible immunological mechanism. Lung. Cancer. 2001; 32(2): 197-201.
  27. Karim R., Jordanova E.S., Piersma S.J., Kenter G.G., Chen L., Boer J.M., et al. Tumor-expressed B7-H1 and B7-DC in relation to PD-1þ T-cell infiltration and survival of patients with cervical carcinoma. Clin. Cancer Res. 2009; 15(20): 6341-5.
  28. Cedres S. et al. Analysis of Expression of Programmed Cell Death 1 Ligand 1 in Malignant Pleural Mesothelioma. PLOS One J. 2015; 1: 1-12.
  29. Brahmer J., Tykodi S., Chow L., Hwu W.J., Topalian S.L., Hwu P., et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 2012; 366(28): 2455-65. doi: 10.1056/NEJMoa1200694
  30. Hamid O., Robert C., Daud A., Hodi F.S., Hwu W.J., Kefford R., et al. Safety and tumor responses with lambrolizumab (Anti-PD-1) in melanoma. N. Engl. J. Med. 2013; 369(2): 134-44. doi: 10.1056/NEJMoa1305133
  31. Herbst R, Gordon M, Fine G, Sosman JA, Soria JC, Hamid O, et al. A study of MPDL3280A, an engineered PD-L1 antibody in patients with locally advanced or metastatic tumors. J. Clin. Oncol. 2013; 31( Suppl 15): 3000.
  32. Topalian S., Hodi S., Brahmer J., Gettinger S.N., Smith D.C., McDermott D.F., et al. Safety, activity and immune correlates of anti-PD1 antibody in cancer. N. Engl. J. Med. 2012; 366(26): 2443-54. doi: 10.1056/NEJMoa1200690.
  33. Currie A., Prosser A., McDonnell A., Cleaver A.L., Robinson B.W., Freeman G.J., et al. Dual control of antitumor CD8 T cells through the programmed death-1/programmed death-ligand 1 pathway and immunosuppressive CD4 T cells: regulation and counterregulation. J. Immunol. 2009; 183(12): 7898-908.
  34. Mansfield A., Roden A., Peikert T., Sheinin Y.M., Harrington S.M., Krco C.J., et al. J. Thorac. Oncol. 2014; 9(7): 1036-40. doi: 10.1097/JTO.0000000000000177.
  35. Travis W.D., Brambilla E., Burke A.P., Marx A., Nicholson A.G. Eds. WHO Classification of Tumours of the Lung, Pleura, Thymus and Heart. International Agency for Research on Cancer. Lyon; 2015.
  36. Lantuejoul S., Le Stang N., Damiola F., et al. PD-L1 Testing for Immune Checkpoint Inhibitors in Mesothelioma: For Want of Anything Better? J. Thorac. Oncol. 2017; 12(5): 778-81. doi: 10.1016/j.jtho.2017.03.018.

Statistics

Views

Abstract: 175

Article Metrics

Metrics Loading ...

Refbacks

  • There are currently no refbacks.

Copyright (c) 2018 Eco-Vector



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies