CARDIOVASCULAR COMPLICATIONS OF ANTICANCER THERAPY: DEFINITION, ETIOLOGY, EPIDEMIOLOGY, PATHOGENESIS, CLASSIFICATION (PART I)



Cite item

Full Text

Abstract

The given review is devoted to the problem of the cardiotoxicity of chemotherapeutic agents. Modern cytostatics cause clinically significant manifestations of cardiotoxicity - myocardial injuries, reducing both quality and life expectancy of oncological patients. Many of chemotherapeutic agents can cause cardiovascular complications such as the development of the left ventricular dysfunction and heart failure, myocardial ischemia, arterial hypertension, thromboembolism, QT prolongation and arrhythmias. The toxic influence of the most often used chemotherapeutic agents on heart (antimetabolites, alkylating agents, platinum compounds, taxanes, vinca alkaloids, monoclonal antibodies, anthracycline antibiotics, topoisomerase and protein kinase inhibitors, immunomodulatory agents and cytokines) has been described. The results of recent studies on etiology, epidemiology, classification and pathogenesis are presented in the first part of review. Most attention is paid to recent research in pathogenesis of chemotherapy induced cardiotoxicity. Given the numerous aspects of cardiotoxicity are not completely studied yet, obviously the further researches are needed in this field.

Full Text

Введение в практику современных противоопухолевых препаратов и интенсивных схем химиотерапии (ХТ) способствовало значительному повышению продолжительности жизни и безрецидивной выживаемости онкологических больных, ранее считавшихся неизлечимыми. Вместе с тем, это привело и к существенному возрастанию числа осложнений, связанных с использованием противоопухолевых средств. Одно из таких осложнений обусловлено их кардиотоксичностью (КТ), приводящей к существенному снижению качества и продолжительности жизни онкологических больных [1]. Определение понятия кардиотоксичности противоопухолевых препаратов Согласно определению RUSSCO (Российское общество клинической онкологии), о КТ необходимо говорить при развитии любых нежелательных эффектов, связанных с сердечно-сосудистой системой на фоне химиотерапевтического лечения онкологических больных. К возможным кардиоваскулярным побочным эффектам противоопухолевой терапии относятся [2, 3]: • развитие дисфункции левого желудочка (ЛЖ)/сердечная недостаточность (СН); • ишемия миокарда; • клапанные пороки сердца; • артериальная гипертензия (АГ); • нарушения сердечного ритма и проводимости; • тромбоэмболические осложнения. Этиология Химиотерапевтические препараты, способные вызывать различные виды поражения сердца, приведены в табл. 1 [3-5]. Эпидемиология Распространённость КТ химиопрепаратов в настоящее время достоверно неизвестна, так как её клинические проявления могут наступать спустя десятки лет после ХТ. У детей, излеченных от онкологической патологии, даже спустя 10-15 лет показатели кардиальной смертности возрастают более чем в 8 раз [4]. Долгосрочное наблюдение за взрослыми пациентами с онкологическими заболеваниями показало увеличение у них частоты застойной СН в 15 раз, кардиоваскулярных заболеваний - в 10 раз, а инсультов - в 9 раз [6]. Показатели СН, ассоциированной с применением антрациклинов, варьируют в пределах 0,14-48% (0,14-5% при кумулятивной дозе доксорубицина более 400 мг/м2, 7-26% - при дозе более 550 мг/м2, 17-48% - при дозе более 700 мг/м2) [6], при применении высоких доз циклофосфамида её распространённость достигает 28% [7], трастузумаба - 1% [8], ингибиторов протеинкиназ - 12,5% [9]. Частота встречаемости различных проявлений КТ, в зависимости от применяемого химиотерапевтического агента, представлена в табл. 2 [4, 6, 7]. Патогенез Выделяют два типа КТ. При первом происходит непосредственная гибель кардиомиоцитов вследствие некроза либо апоптоза (он наиболее характерен для антрациклиновых антибиотиков). При втором, в частности, развивающемся на фоне приёма трастузумаба, наблюдается дисфункция кардиомиоцитов (как правило, обратимая) [5]. На сегодняшний день относительно изученной является лишь антрациклиновая КТ. О КТ средств, избирательно действующих на тирозиновую протеинкиназу типа HER2 (трастузумаб, пертузумаб и лапатиниб), а также таксанов и алкилирующих агентов существует лишь ряд гипотез. Механизмы КТ остальных групп препаратов в настоящее время практически не изучены. Антрациклины Выделяют ряд патогенетических механизмов, приводящих к развитию антрациклиновой КТ [4]. Активация перекисного окисления липидов (ПОЛ) является одним из основных механизмов КТ антрациклинов. Известно, что ткань миокарда обладает повышенной чувствительностью к действию свободных радикалов вследствие низкого содержания в ней антиоксидантных ферментов - глутатионпероксидазы, каталазы и супероксиддисмутазы. Предполагается, что свободные радикалы, вырабатываемые при метаболической активации антрациклинов, оказывают токсическое действие на кардиомиоциты, в особенности - на их мембранные структуры. Метаболическая активация этих цитостатиков происходит путём ферментативной редукции до семихиноновых радикалов при участии различных оксидоредуктаз либо путём окисления под действием пероксидаз в мембранных структурах кардиомиоцитов. В последующем, семихинон может соединяться с ионами железа и подвергаться серии окислительно-восстановительных реакций (redoxcycling) с продукцией гидроксильных радикалов либо передавать свой электрон молекуле кислорода, восстанавливая хинон и продуцируя супероксидные анионы. Кроме того, возможно соединение непосредственно антрациклина с ионами железа и последующей активацией свободнорадикального окисления [4, 10]. Таким образом, оба пути завершаются образованием высокореактивных метаболитов кислорода. При этом ионы железа действуют как катализатор свободнорадикальных реакций и играют ключевую роль в реализации кардиотоксического действия антрациклинов. Также известно, что антрациклины способны вытеснять железо из ферритина, компенсируя низкое содержание металла в цитозоле [11]. Нарушение функции митохондрий. Результаты многих исследований свидетельствуют о токсическом действии антрациклинов на митохондрии кардиомиоцитов [4, 12]. В первую очередь повреждение митохондрий может быть обусловлено воздействием свободных радикалов, образовавшихся в процессе метаболической активации этих препаратов. Среди других возможных причин рассматриваются угнетение антрациклинами креатинактивируемого дыхания митохондрий кардиомиоцита путём разрушения связи кардиолипина с креатинкиназой, нарушение мембранного потенциала, а также нарушение обмена ионов кальция в митохондриях [13]. Повреждение ДНК и нарушение синтеза протеинов. Предполагается, что позднее кардиотоксическое действие антрациклинов связано с повреждением ДНК и подавлением синтеза специфических сократительных белков в кардиомиоцитах. Выделяют следующие возможные механизмы влияния антрациклинов на ДНК: во-первых, внедрение антрациклинового кольца между смежными участками спирали ДНК с нарушением её матричной функции; во-вторых, окислительная деструкция ДНК, обусловленная генерацией активных субстанций кислорода. Необходимо отметить, что свободные радикалы продуцируются антрациклинами непосредственно в геномном материале и атакуют практически все его компоненты [4, 14, 15]. Апоптоз кардиомиоцитов. Ещё одним вероятным механизмом КТ антрациклинов является индукция апоптоза - запрограммированной гибели клеток. Предполагается, что триггерами апоптоза могут быть реактивные субстанции кислорода, в особенности гидроксильные радикалы [4]. Определённое влияние на выраженность апоптоза также могут оказывать различные гены. Так, существует предположение, что антрациклины индуцируют апоптоз кардиомиоцитов за счёт подавления активности фактора транскрипции GATA-4 [16]. Также обсуждается возможная роль экспрессии онкогена p53 как триггера апоптоза [4]. Нарушение экспрессии кардиальных генов. Антрациклины способны оказывать негативное влияние на экспрессию различных кардиальных генов, что может вызывать различные патологические изменения в миокарде, включая активацию ПОЛ, нарушение обмена ионов кальция и синтеза сократительных белков [4]. Так, в настоящее время предполагается, что снижение активности антиоксидантов в сердце под влиянием антрациклинов является следствием угнетения экспрессии кардиальных генов [17, 18]. Ингибирование топоизмеразы. Недавно было показано, что ключевым медиатором индуцированной антрациклинами кардиотоксичности является топоизомераза 2b. Топоизомераза 2-го типа осуществляет раскручивание цепочек ДНК в период её репликации, транскрипции или рекомбинации. У человека имеется 2 вида изомеразы 2-го типа: топоизомераза 2а (Top2a) и топоизомераза 2b (Тор2b). Считается, что Top2a находится преимущественно в пролиферирующих клетках, участвует в репликации ДНК и является основной молекулярной целью противоопухолевой активности антрациклинов. Напротив, Top2b находится в покоящихся клетках, в том числе в кардиомиоцитах. К сожалению, она также подвергается воздействию антрациклиновых антибиотиков [18-20]. Ингибирование топоизомеразы 2 антрациклинами вызывает разрывы в обеих цепочках ДНК, что и приводит к гибели клеток миокарда. Таким образом, воздействие антрациклина на Top2b является ключевым фактором развития кардиотоксичности. При этом удаление из сердца мышей Top2b защищает их от развития антрациклиновой кардиомиопатии [18]. Наиболее часто применение антрациклинов ассоциировано с развитием СН. По клиническим признакам повреждение сердца, ассоциированное с приёмом антрациклинов, условно подразделяют на 4 фазы [4-6]: • Острое повреждение сердца - острые, как правило, обратимые проявления, возникающие во время (либо сразу после) внутривенного введения цитостатиков. Клинически может проявляться гипотензией, тахи- или брадикардией, различными аритмиями. Тяжесть клинических проявлений зависит прежде всего от скорости введения антрациклинов. • Подострое повреждение сердца развивается в начальной фазе терапии антрациклинами и, как правило, проявляется в виде миокардита или перикардита, которые могут сопровождаться нарушениями ритма, дисфункцией ЛЖ и, в ряде случаев, развитием инфаркта миокарда. • Хроническое повреждение сердца развивается в течение года после противоопухолевого лечения и проявляется снижением фракции выброса ЛЖ и СН. Как правило, у пациентов наблюдаются признаки недостаточности ЛЖ - одышка, тахикардия, кардиальная астма, отёк легких. Иногда при хроническом кардиотоксическом действии антрациклинов наблюдается изолированная правожелудочковая недостаточность. • Позднее хроническое повреждение сердца развивается спустя как минимум год после химиотерапии и проявляется кардиальной дисфункцией, которая характеризуется признаками рестриктивной или дилатационной кардиомиопатии, устойчивой к медикаментозной терапии и нередко требующей трансплантации сердца. У пациентов наблюдаются снижение толерантности к физическим нагрузкам, симптомы застойной СН, нарушения ритма и проводимости различной степени тяжести с хроническим и прогрессирующим течением. Ингибиторы тирозинкиназы типа HER2 (трастузумаб, пертузумаб и лапатиниб) Повышенная экспрессия HER2 ассоциирована с агрессивностью опухоли и является прогностически неблагоприятным фактором у женщин с раком молочной железы [18]. Такая же картина наблюдается при раке яичников, желудка и матки. К препаратам, избирательно действующим на HER2, относятся трастузумаб, который связывается с IV внеклеточным доменом HER2, лапатиниб, ингибирующий тирозинкиназу - внутриклеточный домен HER2, и пертузумаб, связывающийся со II доменом HER2. Семейство тирозиновых протеинкиназ EGFR/ErbB состоит из четырех различных протеинкиназ: HER1 (EGFR, ErbB1), HER2 (Neu, ErbB2), HER3 (ErbB3) и HER4 (ErbB4). В нормальных физиологических условиях рецепторы ErbB играют важную роль в передаче сигналов, регулирующих пролиферацию, дифференцировку клеток, а также запуск апоптоза. Процесс передачи внеклеточного сигнала начинается со связывания лиганда со специфическим рецептором плазматической мембраны клетки и активации тирозинкиназы. Передача сигналов ErbB является незаменимой в процессах кардиального и нейронального развития. Блокировка этого пути позиционируется как один из возможных путей КТ [9, 17, 21]. Можно говорить о том, что любое вмешательство в сигнальные механизмы HER является потенциально кардиотоксичным. Алкилирующие агенты Механизм КТ алкилирующих агентов пока неясен. Существует предположение, что циклофосфамид и ифосфамид, являющиеся структурно схожими препаратами, способны оказывать прямое воздействие на клетки эндотелия с последующей транссудацией токсичных метаболитов, что приводит к повреждению кардиомиоцитов, интерстициальным кровоизлияниям и отёку. Образование внутрикапиллярных эмболов может обусловливать дальнейшее ишемическое повреждение миокарда [19]. Другим предполагаемым механизмом КТ этих агентов может быть коронароспазм. Есть также гипотеза, согласно которой ифосфамид, являясь нефротоксичным препаратом, способствует задержке элиминации кардиотоксичных метаболитов [20, 22]. Таксаны Патогенез таксан-индуцированной КТ в настоящее время также достоверно не известен. Предполагается, что она напрямую ассоциирована с их противоопухолевой активностью, которая обусловлена резким усилением процесса полимеризации тубулина и, как следствие, образования микротрубочек. Кроме того, таксаны стабилизируют образовавшиеся микротрубочки, препятствуя их распаду. Способность таксанов полимеризировать тубулин может затрагивать и кардиомиоциты, приводя таким образом к нарушению их электромеханических и эластических свойств [18]. Суммируя данные о КТ различных классов препаратов для противоопухолевой терапии, следует выделить общие факторы риска развития КТ, которые включают кумулятивную дозу, режим инфузии, наличие заболеваний сердца или АГ, сопутствующее применение других кардиотоксических препаратов или лучевой терапии на область средостения, возраст больных старше 65 лет. Растущее сердце также особенно уязвимо, и пациенты детского возраста, получающие антрациклины, находятся в группе чрезвычайно высокого риска развития КТ. Подробно факторы риска КТ представлены в табл. 3 [3, 4, 22-25]. Классификация Хотя общепринятой классификации КТ, вызываемой различными химиотерапевтическими агентами, в настоящее время нет, следует привести некоторые из них. По обратимости повреждений (классификация T. Suter и M. Ewer, 2013) [10, 26]: - I тип (необратимая дисфункция миокарда) - обусловлен гибелью кардиомиоцитов. При данном типе повреждения прослеживается чёткая зависимость между кумулятивной дозой и степенью повреждения миокарда. КТ I типа характерна для антрациклиновых антибиотиков; - II тип (обратимая дисфункция миокарда) - обусловлен митохондриальными и протеиновыми повреждениями. При этом типе кардиотоксической зависимости между кумулятивной дозой препарата и степенью повреждения миокарда не наблюдается. II тип КТ характерен для трастузумаба. Необходимо отметить, что данная классификация имеет некоторые ограничения, так как не учитывает факторы, способствующие развитию КТ. К примеру, трастузумаб, вызывающий II тип КТ, способен инициировать развитие необратимой дисфункции ЛЖ/СН у пациентов, имеющих сопутствующую кардиальную патологию, либо потенцировать КТ I типа у пациентов, ранее получавших терапию антрациклиновыми антибиотиками [24, 27, 28]. По срокам возникновения (для антрациклиновой КТ) [12, 29]: • острая - сразу в процессе (либо немедленно после) внутривенного введения; • подострая - в начальной фазе терапии антрациклинами; • хроническая - в течение одного года после окончания противоопухолевого лечения; • поздняя хроническая - спустя как минимум год после химиотерапии (клиническая манифестация возможна даже спустя десятилетия). По степени тяжести (Национальный институт изучения рака, CTC-NCIC, США) (табл. 4).
×

About the authors

N. T Vatutin

M. Gorky Donetsk National Medical University; V.K. Gusak Institute of Emergency and Reconstructive Surgery

Donetsk, 83003, Ukraine; Donetsk, 83045, Ukraine

E. V Sklyannaya

M. Gorky Donetsk National Medical University; V.K. Gusak Institute of Emergency and Reconstructive Surgery

Donetsk, 83003, Ukraine; Donetsk, 83045, Ukraine

Mariam A. El-Khatib

M. Gorky Donetsk National Medical University

Email: el-khatib.mariam@yandex.ru
MD, Assistant Professor of the Department of Hospital Therapy; Donetsk, 83003,Ukraine Donetsk, 83003, Ukraine

G. G Taradin

M. Gorky Donetsk National Medical University; V.K. Gusak Institute of Emergency and Reconstructive Surgery

Donetsk, 83003, Ukraine; Donetsk, 83045, Ukraine

References

  1. Матяш М.Г., Кравчук Т.Л., Высоцкая В.В., Чернов В.И., Гольдберг В.Е. Индуцированная антрациклинами кардиотоксичность: механизмы развития и клинические проявления. Сибирский онкологический журнал. 2008; 6: 66-75.
  2. Снеговой А.В., Виценя М.В., Копп М.В., Ларионова В.Б. Практические рекомендации по коррекции кардиоваскулярной токсичности, индуцированной химиотерапией и таргетными препаратами. Злокачественные опухоли. 2015; s4: 369-78.
  3. Zamorano J.L., Lancellotti P., Muñoz D.R., Aboyans V., Asteggiano R. et al. ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines. Eur. Heart J. 2016; 37(36): 2768-801. doi: 10.1093/eurheartj/ehw21.
  4. Калинкина Н.В. Повреждение сердца антрациклинами. Донецк: Каштан; 2008.
  5. Ewer M.S., Swain S.M., Cardinale D., Fadol A., SuterT.M. Cardiac dysfunction after cancer treatment. Tex. Heart Inst. J. 2011; 38(3): 248-52.
  6. Yeh E.T., Bickford C.L. Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J. Am. Coll. Cardiol. 2009; 53(24): 2231-47. doi: 10.1016/j.jacc.2009.02.050.
  7. Curigliano G., Cardinale D., Suter T., Plataniotis G., de Azambuja E., Sandri M.T. et al. Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO clinical practice guidelines. Ann. Oncol. 2012; 23(Suppl. 7): vii155-66. doi: 10.1093/annonc/mds293.
  8. Lipshultz S.E., Franco V.I., Miller T.L., Colan S.D., Sallan S.E. Cardiovascular disease in adult survivors of childhood cancer. Annu. Rev. Med. 2015; 66: 161-76. doi: 10.1146/annurev-med-070213-054849.
  9. Chu T.F., Rupnick M.A., Kerkela R., Dallabrida S.M., Zurakowski D., Nguyen L. et al. Cardiotoxicity associated with tyrosinekinase inhibitor sunitinib. Lancet. 2007; 370(9604): 2011-9. doi: 10.1016/S0140-6736(07)61865-0.
  10. Hrdina R., Gersl V., Klimtova I., Simunek T., Machackova J., Adamcova M. Anthracycline-induced cardiotoxicity. Acta Med. (Hradec Kralove). 2000; 43(3): 75-82.
  11. Myers C., Gianni L., Zweier J., Muindi J., Sinha B.K., Eliot H. Role of iron in adriamycin biochemistry. Fed. Proc. 1986; 45(12): 2796-7.
  12. Miolo G.M., La Mura N., Nigri P., Murrone A., Da Ronch L., Viel E. et al. The cardiotoxicity of chemotherapy: New prospects for an old problem. Radiol. Oncol. 2006; 40(3): 149-61.
  13. Volkova M., Russell R. Anthracycline сardiotoxicity: Prevalence, рathogenesis and treatment. Curr. Cardiol. Rev. 2011; 7(4): 214-20. doi: 10.2174/157340311799960645.
  14. Page R.L. 2nd, O’Bryant C.L., Cheng D., Dow T.J., Ky B., Stein C.M. et al. Drugs that may cause or exacerbate heart failure. Circulation. 2016; 134(6): e32-69. doi: 10.1161/CIR.0000000000000426.
  15. Cummings J., Anderson L., Willmott N., Smyth J.F. The molecular pharmacology of doxorubicin in vivo. Eur. J. Cancer. 1991; 27(5): 532-5.
  16. Kim Y., Ma A.G., Kitta K., Fitch S.N., Ikeda T., Ihara Y. et al. Anthracycline-induced suppression of GATA-4 transcription factor: implication in the regulation of cardiac myocyte apoptosis. Mol. Pharmacol. 2003; 63(2): 368-77.
  17. Yin X., Wu H., Chen Y., Kang Y.J. Induction of antioxidants by adriamycin in mouse heart. Biochem. Pharmacol. 1998; 56(1): 87-93.
  18. Bristow M.R., Billingham M.E, Mason J.W., Daniels J.R. Clinical spectrum of anthracycline antibiotic cardiotoxicity. Cancer Treat. Rep. 1978; 62(6): 873-9.
  19. Pai V.B., Nahata M.C. Cardiotoxicity of chemotherapeutic agents: incidence, treatment and prevention. Drug Saf. 2000; 22(4): 263-302.
  20. Morandi P., Ruffini P.A., Benvenuto G.M., Raimondi R., Fosser V. Cardiac toxicity of high-dose chemotherapy. Bone Marrow Transplant. 2005; 35: 323-34. doi: 10.1038/sj.bmt.1704763.
  21. Селиверстова Д.В., Евсина О.В. Кардиотоксичность химиотерапии. Сердце. 2016; 15(1): 50-7. doi: 10.18087 / rhj.2016.1.2115.
  22. Cardinale D., Colombo A., Colombo N. Acute coronary syndrome induced by oral capecitabine. Can. J. Cardiol. 2006; 22(3): 251-3.
  23. Гендлин Г.Е., Емелина Е.И., Никитин И.Г., Васюк Ю.А. Современный взгляд на кардиотоксичность химиотерапии онкологических заболеваний, включающей антрациклиновые антибиотики. Российский кардиологический журнал. 2017; 3: 145-54. doi: 10.15829/1560-4071-2017-3-145-154.
  24. Yeh E.T., Tong A.T., Lenihan D.J., Yusuf S.W., Swafford J., Champion C. et al. Cardiovascular complications of cancer therapy: diagnosis, pathogenesis, and management. Circulation. 2004; 109(25): 3122-31. doi: 10.1161/01.CIR.0000133187.74800.B9.
  25. Suter T.M., Ewer M.S. Cancer drugs and the heart: importance and management. Eur. Heart J. 2013; 34(15): 1102-11. doi: 10.1093/eurheartj/ehs181.
  26. Крикунова О.В., Васюк Ю.А., Висков Р.В., Крикунов П.В., Иванова С.В., Коник В.А. Сердечные тропонины в выявлении кардиотоксичности у пациентов, подвергающихся химиотерапии. Российский кардиологический журнал. 2015; 12: 119-25. http://dx.doi.org/10.15829/1560-4071-2015-12-119-125.
  27. Senkus E., Jassem J. Cardiovascular effects of systemic cancer treatment. Cancer Treat Rev. 2011; 37(4): 300-11. doi: 10.1016/j.ctrv.2010.11.001.
  28. Ewer M.S., O’Shaughnessy J.A. Cardiac toxicity of trastuzumab-related regimens in HER2-overexpressing breast cancer. Clin. Breast Cancer. 2007; 7(8): 600-7.
  29. Manrique C.R., Park M., Tiwari N., Plana J.C., Garcia M.J. Diagnostic strategies for early recognition of cancer therapeutics-related cardiac dysfunction. Clin. Med. Insights Cardiol. 2017; 11: 1-12. doi: 10.1177/1179546817697.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 86496 от 11.12.2023 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ЭЛ № ФС 77 - 80673 от 23.03.2021 г
.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies