Monomeric and Polymeric Cyclopentadienyl Dysprosium Complexes Based on the Acenaphthene-1,2-diimine Ligand

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The reaction of [(Dpp-bian)DyI(Dme)2] (Dpp-bian is 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene, Dme is CH3OCH2CH2OCH3) with Cp*K (Cp* is C5Me5) in toluene followed by crystallization from benzene affords crystals of the 1D coordination polymer [(Dpp-bian)DyIKCp*]n (I)•2.6C6H6 (26%) and crystals of the monomeric complex [(Dpp-bian)DyCp*(Dme)] (II)•1.5C6H6 (12%). The same reaction in 1,2-dimethoxyethane followed by crystallization from benzene makes it possible to isolate only complex II•1.5C6H6 in a yield of 48%. The synthesized compounds are characterized by IR and UV spectroscopy and elemental and thermogravimetric analyses. Their molecular structures are determined by XRD (CIF files CCDC nos. 2298407 (I) and 2298408 (II)).

Texto integral

Acesso é fechado

Sobre autores

D. Lukina

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: igorfed@iomc.ras.ru
Rússia, Nizhny Novgorod

A. Skatova

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: igorfed@iomc.ras.ru
Rússia, Nizhny Novgorod

E. Kozlova

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: igorfed@iomc.ras.ru
Rússia, Nizhny Novgorod

I. Fedyushkin

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: igorfed@iomc.ras.ru
Rússia, Nizhny Novgorod

Bibliografia

  1. Furukawa H., Cordova K.E., O´Keeffe M. et al. // Science. 2013. V. 341. № 6149. P. 1230444-1.
  2. Lin R.-B., Xiang S., Zhou W. et al. // Chem. 2020. V. 6. № 2, P. 337.
  3. Li J.-R., Kuppler R.J., Zhou H.-C. // Chem. Soc. Rev. 2009. V. 38. № 5. P. 1477.
  4. Li J.-R., Sculley J., Zhou. H.-C. // Chem. Rev. 2012. V. 112. № 2. P. 869
  5. Lee J., Farha O.K., Roberts J. et al. // Chem. Soc. Rev. 2009. V. 38. № 5. P. 1450.
  6. Agafonov M.A., Alexandrov E.V., Artyukhova N.A. et al. // J. Struct. Chem. 2022. V. 63. P. 671.
  7. Kurmoo M. // Chem. Soc. Rev. 2009. V. 38. № 5. P. 1353.
  8. Lustig W.P., Mukherjee S., Rudd N.D. et al. // Chem. Soc. Rev. 2017. V. 46. № 11. P. 3242.
  9. Cui Y., Yue Y., Qian G. et al. // Chem. Rev. 2012. V. 112. № 2. P. 1126.
  10. Rocha J., Carlos L.D., Paz F.A.A. et al. // Chem. Soc. Rev. 2011. V. 40. № 2. P. 926.
  11. Bazyakina N.L., Makarov V.M., Ketkov S.Yu. et al. // Inorg. Chem. 2021. V. 60. № 5. P. 3238.
  12. D´Alessandro D.M. // Chem. Commun. 2016. V. 52. № 58. P. 8957.
  13. Calbo J., Golomb M.J., Walsh A. // J. Mater. Chem. A. 2019. № 28. V. 7. P. 16571.
  14. Kharitonov A.D., Trofimova O.Y., Meshcheryakova I.N. et al. // CrystEngComm. 2020. V. 22. № 28. P. 4675.
  15. Fedushkin I.L., Skatova A.A., Chudakova V.A. et al. // Angew. Chem. Int. Ed. 2003. V. 42. № 28. P. 3294.
  16. Fedushkin I.L., Skatova A.A., Chudakova V.A. et al. // Eur. J. Inorg. Chem. 2003. V. 2003. № 18. P. 3336.
  17. Lukoyanov A.N., Fedushkin I.L., Hummert M. et al. // Russ. Chem. Bull. 2006. V. 55. P. 422.
  18. Fedushkin I.L., Lukoyanov A.N., Tishkina A.N. et al. // Chem. Eur. J. 2010. V. 16. № 25. P. 7563.
  19. Fedushkin I.L., Maslova O.V., Baranov E.V. et al. // Inorg. Chem. 2009. V. 48. № 6. P. 2355.
  20. Fedushkin I.L., Maslova O.V., Hummert M. et al. // Inorg. Chem. 2010. V. 49. № 6. P. 2901.
  21. Fedushkin I.L., Skatova A.A., Yambulatov D.S. et al. // Russ. Chem. Bull. 2015. V. 64. P. 38.
  22. Fedushkin I.L., Lukoyanov A.N., Baranov E.V. // Inorg. Chem. 2018. V. 57. № 8. P. 4301.
  23. Fedushkin I.L., Lukina D.A., Skatova A.A. et al. // Chem. Commun. 2018. V. 54. № 92. P. 12950.
  24. Fedushkin I.L., Lukoyanov A.N., Baranov E.V. // Inorg. Chem. 2018. V. 57. № 8. P. 4301.
  25. Lukina D.A., Skatova A.A., Lukoyanov A.N. et al. // Dalton Trans. 2020. V. 49. № 9. P. 2941.
  26. Lukina D.A., Skatova A.A., Sokolov V.G. et al. // Dalton Trans. 2020. V. 49. № 41. P. 14445.
  27. Sokolov V.G., Lukina D.A., Skatova A.A. et al. // J. Struct. Chem. 2023. V. 64. № 9. P. 1724.
  28. Fedushkin I.L., Maslova O.V., Morozov A.G. et al. // Angew. Chem. Int. Ed. 2012. V. 51. № 42. P. 10584.
  29. Bazyakina N.L., Moskalev M.V., Rumyantcev R.V. et al. // Russ. Chem. Bull. 2023. V. 72. P. 507.
  30. Apostolidis C., Deacon G.B., Dornberger E. et al. // Chem. Commun. 1997. № 11. P.1047.
  31. Schumann H., Heim A., Demtschuk J. et al. // Organometallics. 2003. V. 22. № 1. P.118.
  32. Sulway S.A., Layfield R.A., Tuna F. et al. // Chem. Commun. 2012. V. 48. № 10. P. 1508.
  33. Lamberts W., Lueken H. // Inorg. Chim. Acta. 1987. V. 132. № 1. P. 119.
  34. Evans W.J., Rego D.B., Ziller J.W. et al. // Organometallics 2007. V. 26. № 19. P. 4737.
  35. Sokolov V.G., Lukina D.A., Skatova А.А. et al. // Russ. Chem. Bull. 2021. V. 70. P. 2119.
  36. Paulovicova A.A., El-Ayaan U., Shibayama K. et al. // Eur. J. Inorg. Chem. 2001. V. 2001. №. 10. P. 2641.
  37. Rigaku Oxford Diffraction. (2021). CrysAlis Pro software system, version 1.171.41.122a, Rigaku Corporation, Wroclaw, Poland.
  38. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3.
  39. Sheldrick G.M. // Acta Crystallogr. С. 2015. V. 71. P. 3.
  40. Spek A.L. // Acta Crystallogr. C. 2015. V. 71. P. 9.
  41. Dodonov V.A., Makarov V.M., Zemnyukova M.N. et al. // Organometallics. 2023. V. 42. № 18. P. 2558.
  42. Fedushkin I.L., Skatova A.A., Chudakova V.A. et al. // Eur. J. Inorg. Chem. 2004. V. 2004. № 2. P. 388.
  43. Skatova A.A., Yambulatov D.S., Fedyushkin I.L. et al. // Russ. J. Coord. Chem. 2018. V. 44. P. 400.
  44. Long J., Tolpygin A.O., Cherkasov A.V. et al. // Organometallics. 2019. V. 38. P. 748.
  45. Woen D.H., Kotyk C.M., Mueller T.J. et al. // Organometallics. 2017. V. 36. № 23. P. 4558.
  46. Janiak C. // J. Chem. Soc. Dalton Trans. 2000. P. 3885.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Electronic absorption spectra of complexes I(1) and II(2) in benzene.

Baixar (82KB)
3. Fig. 2. Thermogravimetric analysis of complexes I (a) and II (b): TG (1), DTG (2).

Baixar (203KB)
4. Fig. 3. Fragment of the molecular structure of 1D-coordination polymer I. Hydrogen atoms are not shown.

Baixar (205KB)
5. Fig. 4. Fragment of the crystal packing of complex I. Crystallographic projections along the a (a) axis and along the c (b) axis are presented. Hydrogen atoms and solvent molecules are not shown.

Baixar (824KB)
6. Fig. 5. The molecular structure of complex II. Hydrogen atoms are not shown.

Baixar (108KB)
7. Fig. 6. Formation of pairs of complex II molecules in a crystal. Hydrogen atoms are not shown.

Baixar (187KB)
8. Scheme 1.

Baixar (192KB)

Declaração de direitos autorais © Российская академия наук, 2024