Monomeric and Polymeric Cyclopentadienyl Dysprosium Complexes Based on the Acenaphthene-1,2-diimine Ligand
- Authors: Lukina D.A.1, Skatova A.A.1, Kozlova E.A.1, Fedyushkin I.L.1
-
Affiliations:
- Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences
- Issue: Vol 50, No 6 (2024)
- Pages: 363-373
- Section: Articles
- URL: https://rjonco.com/0132-344X/article/view/667591
- DOI: https://doi.org/10.31857/S0132344X24060024
- EDN: https://elibrary.ru/MVSNXD
- ID: 667591
Cite item
Abstract
The reaction of [(Dpp-bian)DyI(Dme)2] (Dpp-bian is 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene, Dme is CH3OCH2CH2OCH3) with Cp*K (Cp* is C5Me5) in toluene followed by crystallization from benzene affords crystals of the 1D coordination polymer [(Dpp-bian)DyIKCp*]n (I)•2.6C6H6 (26%) and crystals of the monomeric complex [(Dpp-bian)DyCp*(Dme)] (II)•1.5C6H6 (12%). The same reaction in 1,2-dimethoxyethane followed by crystallization from benzene makes it possible to isolate only complex II•1.5C6H6 in a yield of 48%. The synthesized compounds are characterized by IR and UV spectroscopy and elemental and thermogravimetric analyses. Their molecular structures are determined by XRD (CIF files CCDC nos. 2298407 (I) and 2298408 (II)).
Full Text

About the authors
D. A. Lukina
Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences
Email: igorfed@iomc.ras.ru
Russian Federation, Nizhny Novgorod
A. A. Skatova
Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences
Email: igorfed@iomc.ras.ru
Russian Federation, Nizhny Novgorod
E. A. Kozlova
Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences
Email: igorfed@iomc.ras.ru
Russian Federation, Nizhny Novgorod
I. L. Fedyushkin
Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences
Author for correspondence.
Email: igorfed@iomc.ras.ru
Russian Federation, Nizhny Novgorod
References
- Furukawa H., Cordova K.E., O´Keeffe M. et al. // Science. 2013. V. 341. № 6149. P. 1230444-1.
- Lin R.-B., Xiang S., Zhou W. et al. // Chem. 2020. V. 6. № 2, P. 337.
- Li J.-R., Kuppler R.J., Zhou H.-C. // Chem. Soc. Rev. 2009. V. 38. № 5. P. 1477.
- Li J.-R., Sculley J., Zhou. H.-C. // Chem. Rev. 2012. V. 112. № 2. P. 869
- Lee J., Farha O.K., Roberts J. et al. // Chem. Soc. Rev. 2009. V. 38. № 5. P. 1450.
- Agafonov M.A., Alexandrov E.V., Artyukhova N.A. et al. // J. Struct. Chem. 2022. V. 63. P. 671.
- Kurmoo M. // Chem. Soc. Rev. 2009. V. 38. № 5. P. 1353.
- Lustig W.P., Mukherjee S., Rudd N.D. et al. // Chem. Soc. Rev. 2017. V. 46. № 11. P. 3242.
- Cui Y., Yue Y., Qian G. et al. // Chem. Rev. 2012. V. 112. № 2. P. 1126.
- Rocha J., Carlos L.D., Paz F.A.A. et al. // Chem. Soc. Rev. 2011. V. 40. № 2. P. 926.
- Bazyakina N.L., Makarov V.M., Ketkov S.Yu. et al. // Inorg. Chem. 2021. V. 60. № 5. P. 3238.
- D´Alessandro D.M. // Chem. Commun. 2016. V. 52. № 58. P. 8957.
- Calbo J., Golomb M.J., Walsh A. // J. Mater. Chem. A. 2019. № 28. V. 7. P. 16571.
- Kharitonov A.D., Trofimova O.Y., Meshcheryakova I.N. et al. // CrystEngComm. 2020. V. 22. № 28. P. 4675.
- Fedushkin I.L., Skatova A.A., Chudakova V.A. et al. // Angew. Chem. Int. Ed. 2003. V. 42. № 28. P. 3294.
- Fedushkin I.L., Skatova A.A., Chudakova V.A. et al. // Eur. J. Inorg. Chem. 2003. V. 2003. № 18. P. 3336.
- Lukoyanov A.N., Fedushkin I.L., Hummert M. et al. // Russ. Chem. Bull. 2006. V. 55. P. 422.
- Fedushkin I.L., Lukoyanov A.N., Tishkina A.N. et al. // Chem. Eur. J. 2010. V. 16. № 25. P. 7563.
- Fedushkin I.L., Maslova O.V., Baranov E.V. et al. // Inorg. Chem. 2009. V. 48. № 6. P. 2355.
- Fedushkin I.L., Maslova O.V., Hummert M. et al. // Inorg. Chem. 2010. V. 49. № 6. P. 2901.
- Fedushkin I.L., Skatova A.A., Yambulatov D.S. et al. // Russ. Chem. Bull. 2015. V. 64. P. 38.
- Fedushkin I.L., Lukoyanov A.N., Baranov E.V. // Inorg. Chem. 2018. V. 57. № 8. P. 4301.
- Fedushkin I.L., Lukina D.A., Skatova A.A. et al. // Chem. Commun. 2018. V. 54. № 92. P. 12950.
- Fedushkin I.L., Lukoyanov A.N., Baranov E.V. // Inorg. Chem. 2018. V. 57. № 8. P. 4301.
- Lukina D.A., Skatova A.A., Lukoyanov A.N. et al. // Dalton Trans. 2020. V. 49. № 9. P. 2941.
- Lukina D.A., Skatova A.A., Sokolov V.G. et al. // Dalton Trans. 2020. V. 49. № 41. P. 14445.
- Sokolov V.G., Lukina D.A., Skatova A.A. et al. // J. Struct. Chem. 2023. V. 64. № 9. P. 1724.
- Fedushkin I.L., Maslova O.V., Morozov A.G. et al. // Angew. Chem. Int. Ed. 2012. V. 51. № 42. P. 10584.
- Bazyakina N.L., Moskalev M.V., Rumyantcev R.V. et al. // Russ. Chem. Bull. 2023. V. 72. P. 507.
- Apostolidis C., Deacon G.B., Dornberger E. et al. // Chem. Commun. 1997. № 11. P.1047.
- Schumann H., Heim A., Demtschuk J. et al. // Organometallics. 2003. V. 22. № 1. P.118.
- Sulway S.A., Layfield R.A., Tuna F. et al. // Chem. Commun. 2012. V. 48. № 10. P. 1508.
- Lamberts W., Lueken H. // Inorg. Chim. Acta. 1987. V. 132. № 1. P. 119.
- Evans W.J., Rego D.B., Ziller J.W. et al. // Organometallics 2007. V. 26. № 19. P. 4737.
- Sokolov V.G., Lukina D.A., Skatova А.А. et al. // Russ. Chem. Bull. 2021. V. 70. P. 2119.
- Paulovicova A.A., El-Ayaan U., Shibayama K. et al. // Eur. J. Inorg. Chem. 2001. V. 2001. №. 10. P. 2641.
- Rigaku Oxford Diffraction. (2021). CrysAlis Pro software system, version 1.171.41.122a, Rigaku Corporation, Wroclaw, Poland.
- Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3.
- Sheldrick G.M. // Acta Crystallogr. С. 2015. V. 71. P. 3.
- Spek A.L. // Acta Crystallogr. C. 2015. V. 71. P. 9.
- Dodonov V.A., Makarov V.M., Zemnyukova M.N. et al. // Organometallics. 2023. V. 42. № 18. P. 2558.
- Fedushkin I.L., Skatova A.A., Chudakova V.A. et al. // Eur. J. Inorg. Chem. 2004. V. 2004. № 2. P. 388.
- Skatova A.A., Yambulatov D.S., Fedyushkin I.L. et al. // Russ. J. Coord. Chem. 2018. V. 44. P. 400.
- Long J., Tolpygin A.O., Cherkasov A.V. et al. // Organometallics. 2019. V. 38. P. 748.
- Woen D.H., Kotyk C.M., Mueller T.J. et al. // Organometallics. 2017. V. 36. № 23. P. 4558.
- Janiak C. // J. Chem. Soc. Dalton Trans. 2000. P. 3885.
Supplementary files
