Coordination Compounds of 3d Metals with 2,4-Dimethylpyrazolo[1,5-а]benzimidazole: Magnetic and Biological Properties

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

New coordination compounds of copper(I), copper(II), cobalt(II), and nickel(II) with 2,4-dimethylpyrazolo[1,5-а]benzimidazole (L) were synthesized and studied. The complexes [CuLCl] (I), [CuLBr] (II), [CuL2Cl2] (III), [CuL2(NO3)2] · H2O (IV), [CoL2Cl2] · 0,5H2O (V), [CoL2(NO3)2] · · 0,5H2O (VI), and [NiL2(NO3)2] · 0,5H2O (VII) were studied by IR spectroscopy and powder and single crystal X-ray diffraction (CCDC nos. 2321779 ([CuL2Cl2]), 2321780 ([CoL2(NO3)2])). The results indicate that the coordination polyhedron in 2,4-dimethylpyrazolo[1,5-a]benzimidazole complexes is formed by the nitrogen atoms of the monodentate ligand and the coordinated anion. The cytotoxic and cytostatic properties of L and complexes IIII were studied in relation to the HepG2 hepatocellular carcinoma cells.

Texto integral

Acesso é fechado

Sobre autores

O. Shakirova

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences; Komsomolsk-on-Amur State University

Autor responsável pela correspondência
Email: Shakirova_Olga@mail.ru
Rússia, Novosibirsk; Komsomolsk-on-Amur

T. Kuz’menko

Institute of Physical and Organic Chemistry, Southern Federal University

Email: Shakirova_Olga@mail.ru
Rússia, Rostov-on-Don

N. Kurat’eva

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: ludm@niic.nsc.ru
Rússia, Novosibirsk

L. Klyushova

Institute of Molecular Biology and Biophysics, Federal Research Center for Fundamental and Translational Medicine

Email: Shakirova_Olga@mail.ru
Rússia, Novosibirsk

A. Lavrov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: ludm@niic.nsc.ru
Rússia, Novosibirsk

L. Lavrenova

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: ludm@niic.nsc.ru
Rússia, Novosibirsk

Bibliografia

  1. Selivanova G.A., Tretyakov E.V. // Russ. Chem. Bull. 2020. V. 69. № 5. P. 838. https://doi.org/10.1007/s11172-020-2842-3
  2. Proshin A.N., Trofimova T.P., Zefirova O.N. et al. // Russ. Chem. Bull. 2021. V. 70. № 3. P. 51. https://doi.org/10.1007/s11172-021-3116-4]
  3. Kokorekin V.A., Khodonov V.M., S. V. Neverov S.V. et al. // Russ. Chem. Bull. 2021. V. 70. № 3. С. 600. https://doi.org/10.1007/s11172-021-3131-5
  4. Sadaf H., Fettouhi M., Fazal A. et al. // Polyhedron. 2019. V. 70. Р. 537. https://doi.org/10.1016/j.poly.2019.06.025
  5. Muñoz-Patiño N., Sanchez-Eguia B.N., Araiza-Olivera D. et al. // J. Inorg. Biochem. 2020. V. 211. Р. 111198). https://doi.org/10.1016/j.jinorgbio.2020.111198
  6. Chkirate K., Karrouchi K., Dede N. et al. // New J. Che m. 2020. V. 44. Р. 2210. https://doi.org/10.1039/C9NJ05913J
  7. Masaryk L., Tesarova B., Choquesillo-Lazarte D. et al. // J. Inorg. Biochem. 2021. V. 217. Р. 111395). https://doi.org/10.1016/j.jinorgbio.2021.111395
  8. Aragón-Muriel A., Liscano Y., Upegui Y. et al. // Antibiotics. 2021. V. 1. № 6. Р. 728). https://doi.org/10.3390/antibiotics10060728
  9. Alterhoni E., Tavman A., Hacioglu M. et al. // J. Mol. Struct. 2021. V. 1229. Р. 129498). https://doi.org/10.1016/j.molstruc.2020.129498
  10. Raducka A., Świątkowski M., Korona-Głowniak I. et al. // Int. J. Mol. Sci. 2022. V. 23. № 12. Р. 6595). https://doi.org/10.3390/ijms23126595
  11. Üstün E., Şahin N., Özdemir İ. et al. // Arch. Pharm. 2023. Art. e2300302). https://doi.org/10.1002/ardp.202300302
  12. Elkanzi N.A., Ali A.M., Albqmi M. et al. // J. Organomet. Chem. 2022. V. 36. № 11. Art. e6868). https://doi.org/10.1002/aoc.6868
  13. Šindelář Z., Kopel P. // Inorganics. 2023. V. 11. № 3. Р. 113. https://doi.org/10.3390/inorganics11030113
  14. Rogala P., Jabłońska-Wawrzycka A., Czerwonka G. et al. // Molecules. 2022. V. 28. № 1. Р. 40). https://doi.org/10.3390/molecules28010040
  15. Helaly A., Sahyon H., Kiwan H. et al. // Biointerface Res. Appl. Chem. 2023. V. 13. № 4. Р. 365). https://doi.org/10.33263/BRIAC134.365
  16. Sączewski F., Dziemidowicz-Borys E.J., Bednarski P.J. et al. // J. Inorg. Biochem. 2006. V. 100. № 8. Р. 1389). https://doi.org/10.1016/j.jinorgbio.2006.04.002
  17. Volykhina V.E., Shafranovskaya E.V. Vestn. Vitebsk. Gos. Med. Un-ta, 2009, vol. 8, no. 4, p. 6.
  18. Farmer K.J., Sohal R.S. // Free Radic. Biol. Med. 1989. V. 7. № 1. Р. 23. https://doi.org/10.1016/0891-5849(89)90096-8
  19. Rusting R.L. // Sci. Am. 1992. V. 2 67. № 6. Р. 130. https://www.jstor.org/stable/24939339
  20. Lavrenova L.G., Kuz’menko T.A., Ivanova A.D. et al. // New J. Chem. 2017. 41. № 11. Р. 4341. https://doi.org/10.1039/c7nj00533d
  21. Dyukova I.I., Lavrenova L.G., Kuz’menko T.A. et al. // Inorg. Chim. Acta. 2019. V. 486. Р. 406. https://doi.org/10.1016/j.ica.2018.10.064
  22. Dyukova I.I., Kuz’menko T.A., Komarov V.Yu. et al. // Russ. J. Coord. Chem. 2018. V. 44. № 12. Р. 755. https://doi.org/10.1134/s107032841812014x
  23. Ivanova A.D., Kuz’menko T.A., Smolentsev A.I. et al. // Russ. J. Coord. Chem. 2021. V. 47. № 11. Р. 751. https://doi.org/10.1134/S1070328421110026
  24. Ivanova A.D., Komarov V.Y., Glinskaya L.A. еt al. // Russ. Chem. Bull. 2021. V. 70. № 8. Р. 1550. https://doi.org/10.1007/s11172-021-3251-y
  25. Kuz’menko V.V., Komissarov V.N., Simonov A.M. // Chem. Heterocycl. Comp. 1980. V. 16. № 6. Р. 34. https://doi.org/10.1007/pl00020455
  26. APEX2 (version 2012.2–0), SAINT (version 8.18c), and SADABS (version 2008/1) In Bruker Advanced X-ray Solutions. Madison (WI, USA): Bruker AXS Inc., 2000–2012.
  27. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  28. Klyushova L.S., Golubeva Yu.A., Vavilin V.A., Grishanova A.Yu. Acta Biomed. Sci., 2022, vol. 7, no. 5–2, p. 31. https://doi.org/10.29413/ABS.2022-7.5-2.4
  29. Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. New York (NY, USA): J. Wiley & Sons Inc., 1986.
  30. Lever A.B.P. Inorganic Electronic Spectroscopy. Amsterdam (The Netherlands): Elsevier, 1985.
  31. Lavrenova L.G., Ivanova A.I., Glinskaya L.A. et al. // Chem. Asian J. 2023. V. 18. Art. e202201200. https://doi.org/10.1002/asia.202201200
  32. Bonner J.C., Fisher M.E. // Phys. Rev. 1964. V. 135. № 3A. A640. https://doi.org/10.1103/PhysRev.135.A640
  33. Wilkening S., Stahl F., Bader A. // Drug. Metab. Dispos. 2003. V. 31. № 8. Р. 1035. https://doi.org/10.1124/dmd.31.8.1035
  34. Donato M.T., Tolosa L., Gómez-Lechó M.J. // Methods Mol. Biol. 2015. № 1250. Р. 77. https://doi.org/10.1007/978-1-4939-2074-7_5
  35. Nekvindova J., Mrkvicova A., Zubanova V. et al. // Biochem. Pharmacol. 2020. V. 177. No 113912. https://doi.org/10.1016/j.bcp.2020.113912
  36. Shen H., Wu H., Sun F. et al. // Bioengineered. 2021. V. 12. № 1. Р. 240. https://doi.org/10.1080/21655979.2020.1866303
  37. Donato M.T., Jover R., Gómez-Lechón M.J. // Curr. Drug. Metab. 2013. V. 14. № 9. P. 946. https://doi.org/10.2174/1389200211314090002
  38. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet]. Carboplatin. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases, 2012. https://www.ncbi.nlm.nih.gov/books/NBK548565/
  39. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet]. Cisplatin. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases, 2012. https://www.ncbi.nlm.nih.gov/books/NBK548160/

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Scheme 1.

Baixar (21KB)
3. Scheme 2.

Baixar (65KB)
4. Fig. 1. Molecular structure of the [CuL₂Cl₂] complex.

Baixar (134KB)
5. Fig. 2. Crystal structure of the complex [CuL₂Cl₂

Baixar (154KB)
6. Fig. 3. Hexagonal packing motif of the [CuL₂Cl₂] molecular complexes shown in the ab plane (H atoms omitted for clarity).

Baixar (130KB)
7. Fig. 4. Molecular structure of the [CoL₂(NO₃)₂] complex.

Baixar (202KB)
8. Fig. 5. Crystal structure of the [CoL₂(NO₃)₂] complex

Baixar (142KB)
9. Fig. 6. Hexagonal packing motif of the [CoL₂(NO₃)₂] molecular complexes shown in the ab plane (H atoms omitted for clarity).

Baixar (189KB)
10. Fig. 7. Diffraction patterns of complexes of the composition [CuLHal].

Baixar (100KB)
11. Fig. 8. Diffraction patterns of complexes of composition [ML₂A₂].

Baixar (109KB)
12. Fig. 9. Temperature dependences of the magnetic susceptibility of sample III, measured in magnetic fields H = 1, 10 kOe (a); temperature dependences of the inverse susceptibility 1/χp and the effective magnetic moment µeff, calculated in the approximation of non-interacting ions (θ = 0) (b).

Baixar (127KB)
13. Fig. 10. Field dependences of magnetization M and normalized susceptibility χ(H)/χ(0) of sample III. Dashed lines show the approximation of the data by the theoretical dependence for a system of paramagnetic centers (S = 1/2, g = 2.1) with isotropic AFM interaction zJ/kB = 0.30 K. For comparison, the dotted line shows the theoretical magnetization of a system of the same paramagnetic centers with zJ/kB = 0.8 K (θ ≈ –0.4 K).

Baixar (121KB)
14. Fig. 11. Effect of the studied compounds on the viability of HepG2 cells: 1 – number of cells, 2 – dead cells, 3 – living cells, 4 – apoptotic cells.

Baixar (186KB)

Declaração de direitos autorais © Российская академия наук, 2024