Coordination Compounds of 3d Metals with 2,4-Dimethylpyrazolo[1,5-а]benzimidazole: Magnetic and Biological Properties
- Авторлар: Shakirova O.G.1,2, Kuz’menko T.A.3, Kurat’eva N.V.1, Klyushova L.S.4, Lavrov A.N.1, Lavrenova L.G.1
-
Мекемелер:
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
- Komsomolsk-on-Amur State University
- Institute of Physical and Organic Chemistry, Southern Federal University
- Institute of Molecular Biology and Biophysics, Federal Research Center for Fundamental and Translational Medicine
- Шығарылым: Том 50, № 11 (2024)
- Беттер: 773-786
- Бөлім: Articles
- URL: https://rjonco.com/0132-344X/article/view/667649
- DOI: https://doi.org/10.31857/S0132344X24110033
- EDN: https://elibrary.ru/LMVCGZ
- ID: 667649
Дәйексөз келтіру
Аннотация
New coordination compounds of copper(I), copper(II), cobalt(II), and nickel(II) with 2,4-dimethylpyrazolo[1,5-а]benzimidazole (L) were synthesized and studied. The complexes [CuLCl] (I), [CuLBr] (II), [CuL2Cl2] (III), [CuL2(NO3)2] · H2O (IV), [CoL2Cl2] · 0,5H2O (V), [CoL2(NO3)2] · · 0,5H2O (VI), and [NiL2(NO3)2] · 0,5H2O (VII) were studied by IR spectroscopy and powder and single crystal X-ray diffraction (CCDC nos. 2321779 ([CuL2Cl2]), 2321780 ([CoL2(NO3)2])). The results indicate that the coordination polyhedron in 2,4-dimethylpyrazolo[1,5-a]benzimidazole complexes is formed by the nitrogen atoms of the monodentate ligand and the coordinated anion. The cytotoxic and cytostatic properties of L and complexes I–III were studied in relation to the HepG2 hepatocellular carcinoma cells.
Толық мәтін

Авторлар туралы
O. Shakirova
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences; Komsomolsk-on-Amur State University
Хат алмасуға жауапты Автор.
Email: Shakirova_Olga@mail.ru
Ресей, Novosibirsk; Komsomolsk-on-Amur
T. Kuz’menko
Institute of Physical and Organic Chemistry, Southern Federal University
Email: Shakirova_Olga@mail.ru
Ресей, Rostov-on-Don
N. Kurat’eva
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
Email: ludm@niic.nsc.ru
Ресей, Novosibirsk
L. Klyushova
Institute of Molecular Biology and Biophysics, Federal Research Center for Fundamental and Translational Medicine
Email: Shakirova_Olga@mail.ru
Ресей, Novosibirsk
A. Lavrov
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
Email: ludm@niic.nsc.ru
Ресей, Novosibirsk
L. Lavrenova
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
Email: ludm@niic.nsc.ru
Ресей, Novosibirsk
Әдебиет тізімі
- Selivanova G.A., Tretyakov E.V. // Russ. Chem. Bull. 2020. V. 69. № 5. P. 838. https://doi.org/10.1007/s11172-020-2842-3
- Proshin A.N., Trofimova T.P., Zefirova O.N. et al. // Russ. Chem. Bull. 2021. V. 70. № 3. P. 51. https://doi.org/10.1007/s11172-021-3116-4]
- Kokorekin V.A., Khodonov V.M., S. V. Neverov S.V. et al. // Russ. Chem. Bull. 2021. V. 70. № 3. С. 600. https://doi.org/10.1007/s11172-021-3131-5
- Sadaf H., Fettouhi M., Fazal A. et al. // Polyhedron. 2019. V. 70. Р. 537. https://doi.org/10.1016/j.poly.2019.06.025
- Muñoz-Patiño N., Sanchez-Eguia B.N., Araiza-Olivera D. et al. // J. Inorg. Biochem. 2020. V. 211. Р. 111198). https://doi.org/10.1016/j.jinorgbio.2020.111198
- Chkirate K., Karrouchi K., Dede N. et al. // New J. Che m. 2020. V. 44. Р. 2210. https://doi.org/10.1039/C9NJ05913J
- Masaryk L., Tesarova B., Choquesillo-Lazarte D. et al. // J. Inorg. Biochem. 2021. V. 217. Р. 111395). https://doi.org/10.1016/j.jinorgbio.2021.111395
- Aragón-Muriel A., Liscano Y., Upegui Y. et al. // Antibiotics. 2021. V. 1. № 6. Р. 728). https://doi.org/10.3390/antibiotics10060728
- Alterhoni E., Tavman A., Hacioglu M. et al. // J. Mol. Struct. 2021. V. 1229. Р. 129498). https://doi.org/10.1016/j.molstruc.2020.129498
- Raducka A., Świątkowski M., Korona-Głowniak I. et al. // Int. J. Mol. Sci. 2022. V. 23. № 12. Р. 6595). https://doi.org/10.3390/ijms23126595
- Üstün E., Şahin N., Özdemir İ. et al. // Arch. Pharm. 2023. Art. e2300302). https://doi.org/10.1002/ardp.202300302
- Elkanzi N.A., Ali A.M., Albqmi M. et al. // J. Organomet. Chem. 2022. V. 36. № 11. Art. e6868). https://doi.org/10.1002/aoc.6868
- Šindelář Z., Kopel P. // Inorganics. 2023. V. 11. № 3. Р. 113. https://doi.org/10.3390/inorganics11030113
- Rogala P., Jabłońska-Wawrzycka A., Czerwonka G. et al. // Molecules. 2022. V. 28. № 1. Р. 40). https://doi.org/10.3390/molecules28010040
- Helaly A., Sahyon H., Kiwan H. et al. // Biointerface Res. Appl. Chem. 2023. V. 13. № 4. Р. 365). https://doi.org/10.33263/BRIAC134.365
- Sączewski F., Dziemidowicz-Borys E.J., Bednarski P.J. et al. // J. Inorg. Biochem. 2006. V. 100. № 8. Р. 1389). https://doi.org/10.1016/j.jinorgbio.2006.04.002
- Volykhina V.E., Shafranovskaya E.V. Vestn. Vitebsk. Gos. Med. Un-ta, 2009, vol. 8, no. 4, p. 6.
- Farmer K.J., Sohal R.S. // Free Radic. Biol. Med. 1989. V. 7. № 1. Р. 23. https://doi.org/10.1016/0891-5849(89)90096-8
- Rusting R.L. // Sci. Am. 1992. V. 2 67. № 6. Р. 130. https://www.jstor.org/stable/24939339
- Lavrenova L.G., Kuz’menko T.A., Ivanova A.D. et al. // New J. Chem. 2017. 41. № 11. Р. 4341. https://doi.org/10.1039/c7nj00533d
- Dyukova I.I., Lavrenova L.G., Kuz’menko T.A. et al. // Inorg. Chim. Acta. 2019. V. 486. Р. 406. https://doi.org/10.1016/j.ica.2018.10.064
- Dyukova I.I., Kuz’menko T.A., Komarov V.Yu. et al. // Russ. J. Coord. Chem. 2018. V. 44. № 12. Р. 755. https://doi.org/10.1134/s107032841812014x
- Ivanova A.D., Kuz’menko T.A., Smolentsev A.I. et al. // Russ. J. Coord. Chem. 2021. V. 47. № 11. Р. 751. https://doi.org/10.1134/S1070328421110026
- Ivanova A.D., Komarov V.Y., Glinskaya L.A. еt al. // Russ. Chem. Bull. 2021. V. 70. № 8. Р. 1550. https://doi.org/10.1007/s11172-021-3251-y
- Kuz’menko V.V., Komissarov V.N., Simonov A.M. // Chem. Heterocycl. Comp. 1980. V. 16. № 6. Р. 34. https://doi.org/10.1007/pl00020455
- APEX2 (version 2012.2–0), SAINT (version 8.18c), and SADABS (version 2008/1) In Bruker Advanced X-ray Solutions. Madison (WI, USA): Bruker AXS Inc., 2000–2012.
- Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
- Klyushova L.S., Golubeva Yu.A., Vavilin V.A., Grishanova A.Yu. Acta Biomed. Sci., 2022, vol. 7, no. 5–2, p. 31. https://doi.org/10.29413/ABS.2022-7.5-2.4
- Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. New York (NY, USA): J. Wiley & Sons Inc., 1986.
- Lever A.B.P. Inorganic Electronic Spectroscopy. Amsterdam (The Netherlands): Elsevier, 1985.
- Lavrenova L.G., Ivanova A.I., Glinskaya L.A. et al. // Chem. Asian J. 2023. V. 18. Art. e202201200. https://doi.org/10.1002/asia.202201200
- Bonner J.C., Fisher M.E. // Phys. Rev. 1964. V. 135. № 3A. A640. https://doi.org/10.1103/PhysRev.135.A640
- Wilkening S., Stahl F., Bader A. // Drug. Metab. Dispos. 2003. V. 31. № 8. Р. 1035. https://doi.org/10.1124/dmd.31.8.1035
- Donato M.T., Tolosa L., Gómez-Lechó M.J. // Methods Mol. Biol. 2015. № 1250. Р. 77. https://doi.org/10.1007/978-1-4939-2074-7_5
- Nekvindova J., Mrkvicova A., Zubanova V. et al. // Biochem. Pharmacol. 2020. V. 177. No 113912. https://doi.org/10.1016/j.bcp.2020.113912
- Shen H., Wu H., Sun F. et al. // Bioengineered. 2021. V. 12. № 1. Р. 240. https://doi.org/10.1080/21655979.2020.1866303
- Donato M.T., Jover R., Gómez-Lechón M.J. // Curr. Drug. Metab. 2013. V. 14. № 9. P. 946. https://doi.org/10.2174/1389200211314090002
- LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet]. Carboplatin. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases, 2012. https://www.ncbi.nlm.nih.gov/books/NBK548565/
- LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet]. Cisplatin. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases, 2012. https://www.ncbi.nlm.nih.gov/books/NBK548160/
Қосымша файлдар
