Coordination Compounds of 3d Metals with 2,4-Dimethylpyrazolo[1,5-а]benzimidazole: Magnetic and Biological Properties

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

New coordination compounds of copper(I), copper(II), cobalt(II), and nickel(II) with 2,4-dimethylpyrazolo[1,5-а]benzimidazole (L) were synthesized and studied. The complexes [CuLCl] (I), [CuLBr] (II), [CuL2Cl2] (III), [CuL2(NO3)2] · H2O (IV), [CoL2Cl2] · 0,5H2O (V), [CoL2(NO3)2] · · 0,5H2O (VI), and [NiL2(NO3)2] · 0,5H2O (VII) were studied by IR spectroscopy and powder and single crystal X-ray diffraction (CCDC nos. 2321779 ([CuL2Cl2]), 2321780 ([CoL2(NO3)2])). The results indicate that the coordination polyhedron in 2,4-dimethylpyrazolo[1,5-a]benzimidazole complexes is formed by the nitrogen atoms of the monodentate ligand and the coordinated anion. The cytotoxic and cytostatic properties of L and complexes IIII were studied in relation to the HepG2 hepatocellular carcinoma cells.

Full Text

Restricted Access

About the authors

O. G. Shakirova

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences; Komsomolsk-on-Amur State University

Author for correspondence.
Email: Shakirova_Olga@mail.ru
Russian Federation, Novosibirsk; Komsomolsk-on-Amur

T. A. Kuz’menko

Institute of Physical and Organic Chemistry, Southern Federal University

Email: Shakirova_Olga@mail.ru
Russian Federation, Rostov-on-Don

N. V. Kurat’eva

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: ludm@niic.nsc.ru
Russian Federation, Novosibirsk

L. S. Klyushova

Institute of Molecular Biology and Biophysics, Federal Research Center for Fundamental and Translational Medicine

Email: Shakirova_Olga@mail.ru
Russian Federation, Novosibirsk

A. N. Lavrov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: ludm@niic.nsc.ru
Russian Federation, Novosibirsk

L. G. Lavrenova

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: ludm@niic.nsc.ru
Russian Federation, Novosibirsk

References

  1. Selivanova G.A., Tretyakov E.V. // Russ. Chem. Bull. 2020. V. 69. № 5. P. 838. https://doi.org/10.1007/s11172-020-2842-3
  2. Proshin A.N., Trofimova T.P., Zefirova O.N. et al. // Russ. Chem. Bull. 2021. V. 70. № 3. P. 51. https://doi.org/10.1007/s11172-021-3116-4]
  3. Kokorekin V.A., Khodonov V.M., S. V. Neverov S.V. et al. // Russ. Chem. Bull. 2021. V. 70. № 3. С. 600. https://doi.org/10.1007/s11172-021-3131-5
  4. Sadaf H., Fettouhi M., Fazal A. et al. // Polyhedron. 2019. V. 70. Р. 537. https://doi.org/10.1016/j.poly.2019.06.025
  5. Muñoz-Patiño N., Sanchez-Eguia B.N., Araiza-Olivera D. et al. // J. Inorg. Biochem. 2020. V. 211. Р. 111198). https://doi.org/10.1016/j.jinorgbio.2020.111198
  6. Chkirate K., Karrouchi K., Dede N. et al. // New J. Che m. 2020. V. 44. Р. 2210. https://doi.org/10.1039/C9NJ05913J
  7. Masaryk L., Tesarova B., Choquesillo-Lazarte D. et al. // J. Inorg. Biochem. 2021. V. 217. Р. 111395). https://doi.org/10.1016/j.jinorgbio.2021.111395
  8. Aragón-Muriel A., Liscano Y., Upegui Y. et al. // Antibiotics. 2021. V. 1. № 6. Р. 728). https://doi.org/10.3390/antibiotics10060728
  9. Alterhoni E., Tavman A., Hacioglu M. et al. // J. Mol. Struct. 2021. V. 1229. Р. 129498). https://doi.org/10.1016/j.molstruc.2020.129498
  10. Raducka A., Świątkowski M., Korona-Głowniak I. et al. // Int. J. Mol. Sci. 2022. V. 23. № 12. Р. 6595). https://doi.org/10.3390/ijms23126595
  11. Üstün E., Şahin N., Özdemir İ. et al. // Arch. Pharm. 2023. Art. e2300302). https://doi.org/10.1002/ardp.202300302
  12. Elkanzi N.A., Ali A.M., Albqmi M. et al. // J. Organomet. Chem. 2022. V. 36. № 11. Art. e6868). https://doi.org/10.1002/aoc.6868
  13. Šindelář Z., Kopel P. // Inorganics. 2023. V. 11. № 3. Р. 113. https://doi.org/10.3390/inorganics11030113
  14. Rogala P., Jabłońska-Wawrzycka A., Czerwonka G. et al. // Molecules. 2022. V. 28. № 1. Р. 40). https://doi.org/10.3390/molecules28010040
  15. Helaly A., Sahyon H., Kiwan H. et al. // Biointerface Res. Appl. Chem. 2023. V. 13. № 4. Р. 365). https://doi.org/10.33263/BRIAC134.365
  16. Sączewski F., Dziemidowicz-Borys E.J., Bednarski P.J. et al. // J. Inorg. Biochem. 2006. V. 100. № 8. Р. 1389). https://doi.org/10.1016/j.jinorgbio.2006.04.002
  17. Volykhina V.E., Shafranovskaya E.V. Vestn. Vitebsk. Gos. Med. Un-ta, 2009, vol. 8, no. 4, p. 6.
  18. Farmer K.J., Sohal R.S. // Free Radic. Biol. Med. 1989. V. 7. № 1. Р. 23. https://doi.org/10.1016/0891-5849(89)90096-8
  19. Rusting R.L. // Sci. Am. 1992. V. 2 67. № 6. Р. 130. https://www.jstor.org/stable/24939339
  20. Lavrenova L.G., Kuz’menko T.A., Ivanova A.D. et al. // New J. Chem. 2017. 41. № 11. Р. 4341. https://doi.org/10.1039/c7nj00533d
  21. Dyukova I.I., Lavrenova L.G., Kuz’menko T.A. et al. // Inorg. Chim. Acta. 2019. V. 486. Р. 406. https://doi.org/10.1016/j.ica.2018.10.064
  22. Dyukova I.I., Kuz’menko T.A., Komarov V.Yu. et al. // Russ. J. Coord. Chem. 2018. V. 44. № 12. Р. 755. https://doi.org/10.1134/s107032841812014x
  23. Ivanova A.D., Kuz’menko T.A., Smolentsev A.I. et al. // Russ. J. Coord. Chem. 2021. V. 47. № 11. Р. 751. https://doi.org/10.1134/S1070328421110026
  24. Ivanova A.D., Komarov V.Y., Glinskaya L.A. еt al. // Russ. Chem. Bull. 2021. V. 70. № 8. Р. 1550. https://doi.org/10.1007/s11172-021-3251-y
  25. Kuz’menko V.V., Komissarov V.N., Simonov A.M. // Chem. Heterocycl. Comp. 1980. V. 16. № 6. Р. 34. https://doi.org/10.1007/pl00020455
  26. APEX2 (version 2012.2–0), SAINT (version 8.18c), and SADABS (version 2008/1) In Bruker Advanced X-ray Solutions. Madison (WI, USA): Bruker AXS Inc., 2000–2012.
  27. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  28. Klyushova L.S., Golubeva Yu.A., Vavilin V.A., Grishanova A.Yu. Acta Biomed. Sci., 2022, vol. 7, no. 5–2, p. 31. https://doi.org/10.29413/ABS.2022-7.5-2.4
  29. Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. New York (NY, USA): J. Wiley & Sons Inc., 1986.
  30. Lever A.B.P. Inorganic Electronic Spectroscopy. Amsterdam (The Netherlands): Elsevier, 1985.
  31. Lavrenova L.G., Ivanova A.I., Glinskaya L.A. et al. // Chem. Asian J. 2023. V. 18. Art. e202201200. https://doi.org/10.1002/asia.202201200
  32. Bonner J.C., Fisher M.E. // Phys. Rev. 1964. V. 135. № 3A. A640. https://doi.org/10.1103/PhysRev.135.A640
  33. Wilkening S., Stahl F., Bader A. // Drug. Metab. Dispos. 2003. V. 31. № 8. Р. 1035. https://doi.org/10.1124/dmd.31.8.1035
  34. Donato M.T., Tolosa L., Gómez-Lechó M.J. // Methods Mol. Biol. 2015. № 1250. Р. 77. https://doi.org/10.1007/978-1-4939-2074-7_5
  35. Nekvindova J., Mrkvicova A., Zubanova V. et al. // Biochem. Pharmacol. 2020. V. 177. No 113912. https://doi.org/10.1016/j.bcp.2020.113912
  36. Shen H., Wu H., Sun F. et al. // Bioengineered. 2021. V. 12. № 1. Р. 240. https://doi.org/10.1080/21655979.2020.1866303
  37. Donato M.T., Jover R., Gómez-Lechón M.J. // Curr. Drug. Metab. 2013. V. 14. № 9. P. 946. https://doi.org/10.2174/1389200211314090002
  38. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet]. Carboplatin. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases, 2012. https://www.ncbi.nlm.nih.gov/books/NBK548565/
  39. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet]. Cisplatin. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases, 2012. https://www.ncbi.nlm.nih.gov/books/NBK548160/

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Scheme 1.

Download (21KB)
3. Scheme 2.

Download (65KB)
4. Fig. 1. Molecular structure of the [CuL₂Cl₂] complex.

Download (134KB)
5. Fig. 2. Crystal structure of the complex [CuL₂Cl₂

Download (154KB)
6. Fig. 3. Hexagonal packing motif of the [CuL₂Cl₂] molecular complexes shown in the ab plane (H atoms omitted for clarity).

Download (130KB)
7. Fig. 4. Molecular structure of the [CoL₂(NO₃)₂] complex.

Download (202KB)
8. Fig. 5. Crystal structure of the [CoL₂(NO₃)₂] complex

Download (142KB)
9. Fig. 6. Hexagonal packing motif of the [CoL₂(NO₃)₂] molecular complexes shown in the ab plane (H atoms omitted for clarity).

Download (189KB)
10. Fig. 7. Diffraction patterns of complexes of the composition [CuLHal].

Download (100KB)
11. Fig. 8. Diffraction patterns of complexes of composition [ML₂A₂].

Download (109KB)
12. Fig. 9. Temperature dependences of the magnetic susceptibility of sample III, measured in magnetic fields H = 1, 10 kOe (a); temperature dependences of the inverse susceptibility 1/χp and the effective magnetic moment µeff, calculated in the approximation of non-interacting ions (θ = 0) (b).

Download (127KB)
13. Fig. 10. Field dependences of magnetization M and normalized susceptibility χ(H)/χ(0) of sample III. Dashed lines show the approximation of the data by the theoretical dependence for a system of paramagnetic centers (S = 1/2, g = 2.1) with isotropic AFM interaction zJ/kB = 0.30 K. For comparison, the dotted line shows the theoretical magnetization of a system of the same paramagnetic centers with zJ/kB = 0.8 K (θ ≈ –0.4 K).

Download (121KB)
14. Fig. 11. Effect of the studied compounds on the viability of HepG2 cells: 1 – number of cells, 2 – dead cells, 3 – living cells, 4 – apoptotic cells.

Download (186KB)

Copyright (c) 2024 Российская академия наук