Al Islands on Si(111): Growth Temperature, Morphology and Strain
- Authors: Lomov A.A.1, Zakharov D.M.1, Tarasov M.A.2, Chekushkin A.M.2, Tatarintsev A.A.1, Vasiliev A.L.3
-
Affiliations:
- Valiev Institute of Physics and Technology of the Russian Academy of Sciences
- Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences
- Kurchatov Institute
- Issue: Vol 53, No 4 (2024)
- Pages: 335-345
- Section: ТЕХНОЛОГИИ
- URL: https://rjonco.com/0544-1269/article/view/655218
- DOI: https://doi.org/10.31857/S0544126924040063
- ID: 655218
Cite item
Abstract
The comprehensive structural studies of thin island Al films with a thickness of 20–50 nm deposited by magnetron sputtering on Si(111) substrates in an argon plasma at a pressure of 6*10–3 mbar and a temperature from 20 to 500°C are presented. Studies of the morphology and microstructure of the films were carried out using XRD, SEM, EDS and TEM methods. It has been found that most of the islands are Al {001} and Al {111} crystallites with lateral sizes of 10–100 nm, differently conjugated with Si(111) substrate. At room temperature of the substrate, only Al {001} crystallites are epitaxially formed on it. The Al {111} crystallites epitaxially grown on the substrate dominate as the substrate temperature increases about 400°C. The influence of the temperature of the Si(111) substrate on the process of epitaxial growth of crystallites, the dynamics of their shape and structural perfection is shown. It has been found that crystallites epitaxially connected to the substrate experience deformation ε = 7 × 10–3 and ε = –2 × 10–3 for Al {001} and Al {111}, respectively. It has been shown that for thin island Al films on Si(111), the dependence of the number of crystallization centers and the particle growth rate on the supercooling temperature is consistent with the band model of crystallization. At the same time, a shift in the characteristic temperatures for the zone boundaries is observed due to the properties of the substrate. This must be taken into account when engineering the surface morphology and structural perfection of crystallites in Al island magnetron films.
Full Text

About the authors
A. A. Lomov
Valiev Institute of Physics and Technology of the Russian Academy of Sciences
Author for correspondence.
Email: apbblinov@yandex.ru
Russian Federation, Moscow
D. M. Zakharov
Valiev Institute of Physics and Technology of the Russian Academy of Sciences
Email: apbblinov@yandex.ru
Russian Federation, Moscow
M. A. Tarasov
Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences
Email: apbblinov@yandex.ru
Russian Federation, Moscow
A. M. Chekushkin
Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences
Email: apbblinov@yandex.ru
Russian Federation, Moscow
A. A. Tatarintsev
Valiev Institute of Physics and Technology of the Russian Academy of Sciences
Email: apbblinov@yandex.ru
Russian Federation, Moscow
A. L. Vasiliev
Kurchatov Institute
Email: apbblinov@yandex.ru
Russian Federation, Moscow
References
- Alferov Zh.I. Double heterostructures: concept and applications // Uspehy fizicheskikh nauk. 2002. Т. 172, No 9. P. 1068–1086. (Russian). https://doi.org/10.3367/UFNr.0172.200209e.1068
- Saini S., Ashok P.A. Verma. Dynamic multi-color switching using ultrathin vanadium oxide on aluminum-based asymmetric Fabry–Pérot resonant structure // Appl. Phys. Lett. 2024. V. 124. P. 011105. https://doi.org/10.1063/5.0175803
- Hass G., Francombe M.H., Vossen J.L. Physics of Thin Films-Advances in Research and Development. Academic Press, New York, NY, USA, 2013, ISBN: 9781483144993
- Sunil B.S., Bellanger P., Roques S., Slaoui A., Ulyashin A.G.; Leuvrey C., Bjorge A.R. Formation of microcrystalline silicon layer for thin films silicon solar cells on aluminium substrates // IEEE2016 International Renewable and Sustainable Energy Conference — Marrakech, Morocco (2016.11.14–2016.11.17). P. 214–219. https://doi.org/10.1109/IRSEC.2016.7983910
- Liao W.-S., Lee Si-Ch. Interfacial interaction between Al-1%Si and phosphorus-doped hydrogenated amorphous Si alloy at low temperature // J. Appl. Phys. 1997. V. 81. P. 7793. https://doi.org/10.1063/1.365389
- Barajas-Valdes U., Suárez O.M. Morphological and Structural Characterization of Magnetron-Sputtered Aluminum and Aluminum-Boron Thin Films // Crystals. 2021. V. 11. No 5. P. 492. https://doi.org/10.3390/cryst11050492
- Greibe T., Stenberg M., Wilson C., Bauch T., Shumeiko V., Delsing P., Are “pinholes” the cause of excess current in superconducting tunnel junctions? // Phys. Rev. Lett. 2011. V. 106. P. 097001. https://doi.org/10.1103/PhysRevLett.106.097001
- Tarasov M., Kuzmin L., Kaurova N., Thin multilayer aluminum structures for superconducting devices // Instrum. Exp. Tech. 2009. V. 52. No 6. P. 877, https://doi.org/10.1134/S0020441209060220
- Olausson L., Olausson P., Lind E. Gate-controlled near-surface Josephson junctions // Appl. Phys. Lett. 2024. V. 124. P. 042601. https://doi.org/10.1063/5.0182485
- Merkulova I.E., Influence of synthesis parameters and thermal annealing on grain size of polycrystalline aluminum thin film // Journal of Physics: Conference Series. 2021. V. 2119. P. 012121. https://doi.org/10.1088/1742-6596/2119/1/012121
- Booth S.E., Marsh C.D., Mallik K., Baranauskas V., Sykes J.M., Wilshaw P.R. Fabrication of nanocrystalline aluminium islands using double-surface anodization // J. Vac. Sci. and Tech. B. 2003. V. 21. P. 316. https://doi.org//10.1116/1.1532025
- Khramtsova E.A., Zotov A.V., Saranin A.A., Ryzhkov S.V., Chub A.B., Lifshits V.G. Growth of extra-thin ordered aluminum films on Si(111) surface // Applied Surface Science. 1994. V. 82/83. P. 576–582. https://doi.org/10.1016/0169-4332(94)90278-X
- Grupp C., Taleb-Ibrahimi A. Hydrogen passivation at the Al/H: Si(111)-(1×1) interface // Journal of Vacuum Science & Technology A. 1998. V. 16. P. 2683. https://doi.org/10.1116/1.581400
- Markov I.V. Crystal Growth for beginners (2nd edn). World Scientific Press. New Jersey, London, Singapure 586, 2003, ISBN981-238-245-3.
- Eisenmenger-Sittner C. Growth Control and Thickness Measurement of Thin Films. Encyclopedia of Applied Physics, Wiley-VCH Verlag GmbH & Co. 2019. https://doi.org/10.1002/3527600434.eap809
- Lomov A.A., Zakharov D.M., Tarasov M.A., Chekushkin A.M., Tatarintsev A.A., Kiselev D.A., Ilyina T.S., Seleznev A.E. Influence of the homobuffer layer on the morphology, microstructure, and hardness of Al/Si(111) films // Tech. Phys. 2023. V. 68. No 7. P. 833–842. https://doi.org/10.61011/TP.2023.07.56624.83-23
- Poate J.M., Tu K.N., Mayer J.W. Thin Films–Interdiffusion and Reactions. John Wiley and Sons, Inc. New York, Chichester, Toronto 578, 1978, ISBN: 9780471022381.
- Reed-Hill R.E. Physical Metallurgy Principles (2nd edn). Van Nostrand. USA 920, 1973. ISBN: 9780442268688.
- Fortuin A.W., Alkemade P.F.A., Verbruggen A.H., Steinfort A.J., Zandbergen H., Radelaar S. Characterization of single-crystalline A1 films grown on Si(111) // Surface Science. 1996. V. 366. No 2. P. 285–294. https://doi.org/10.1016/0039-6028(96)00824-2
- Barmak K., Coffey K. Metallic films for electronic, optical and magnetic applications. Woodhead Publishing Lim., Cambridge, UK, 2013, ISBN978-0-85709-057-7.
- Leikin А.Е., Rodin B.I. Materialovedenie. M.: Vishaya Shkola, 416 P. 1971. (Russian)
- Movchan B.A., Demchishin A.V. Study of the structure and properties of thick vacuum condesates of nickel, titanium, tungsten, aluminum oxide and zirconium oxide // Phys. Met. Metallogr. 1969. V. 28. No 4. P. 653–660. (Russian)
- Ohring M. Materials Science of Thin Films. Deposition and Structure (2nd edn). Academic Press, Hoboken, NJ, USA 794, 2002, ISBN978-0-12-524975-1.
- Anders A., A structure zone diagram including plasma-based deposition and ion etching // Thin Solid Films. 2010. V. 518. No 15. P. 4087–4090. https://doi.org/10.1016/j.tsf.2009.10.145
- Thornton J.A. High Rate Thick Film Growth / Ann. Rev. Mater. Sci. 1977. V. 7. P. 239–260. https://doi.org/10.1146/annurev.ms.07.080177.001323
- Kaiser. N. Review of the fundamentals of thin-film growth // Applied Optics. 2002. V. 41. No 16. P. 3053–3060. https://doi.org/10.1364/AO.41.003053
- D’Anterroches C. High resolution TEM study of Al-Si 1% /Si interface (Microsc. Semicond. Mater. Conf., Oxford, 21–23 March, 1983) // Inst. Phys. Conf. Ser. 1983. V. 67: Section 2, 95–102.
- Hasan M.-A., Radnoczi G., Sundgren J.-E. Epitaxial growth of Al on Si (100) and Si (111) by evaporation in uhv // Vacuum. 1990. V. 41. No 4–6. P. 11221–11223. https://doi.org/10.1016/0042-207X(90)93886-N
- Tjong S.C., Chen H. Nanocrystalline materials and coatings // Materials Science and Engineering. 2004. V. R45. No 1–2. P. 1–88. https://doi.org/10.1016/j.mser.2004.07.001
- Wen H.J., Dahne-Prietsch M., Bauer A., Cuberes M.T., Manke I., Kaindl G. Thermal annealing of the epitaxial Al/Si(111)737 interface: Al clustering, interfacial reaction, and Al-induced p+ doping // J. Vac. Sci.Techn. A. 1995. V. 13. P. 2399–2406. https://doi.org/10.1116/1.579480
- Sosnowski M., Ramac S., Brown W.L., Kim Y.O. Importance of steps in heteroepitaxy: The case of aluminum on silicon // Appl. Phys. Lett. 1994. V. 65. P. 2943–2945. https//doi.org/10.1063/1.112541
- Nakashima P.N.H. The Crystallography of Aluminum and Its Alloys // Encyclopedia of Aluminum and Its Alloys ed. G.E. Totten, M Tiryakioğlu, O. Kessler. Boca Raton: CRC Press, 16 Nov 2018, P. 488–586. https://doi.org/10.1201/9781351045636–140000245
- Horio Y. Different Growth Modes of Al on Si(111)7 × 7 and Si(111) √3×√3 –Al Surfaces // Jpn. J. Appl. Phys. 1999. V. 38. No 8. Р. 4881–4886. https://doi.org/10.1143/JJAP.38.4881
Supplementary files
