Al Islands on Si(111): Growth Temperature, Morphology and Strain

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The comprehensive structural studies of thin island Al films with a thickness of 20–50 nm deposited by magnetron sputtering on Si(111) substrates in an argon plasma at a pressure of 6*10–3 mbar and a temperature from 20 to 500°C are presented. Studies of the morphology and microstructure of the films were carried out using XRD, SEM, EDS and TEM methods. It has been found that most of the islands are Al {001} and Al {111} crystallites with lateral sizes of 10–100 nm, differently conjugated with Si(111) substrate. At room temperature of the substrate, only Al {001} crystallites are epitaxially formed on it. The Al {111} crystallites epitaxially grown on the substrate dominate as the substrate temperature increases about 400°C. The influence of the temperature of the Si(111) substrate on the process of epitaxial growth of crystallites, the dynamics of their shape and structural perfection is shown. It has been found that crystallites epitaxially connected to the substrate experience deformation ε = 7 × 10–3 and ε = –2 × 10–3 for Al {001} and Al {111}, respectively. It has been shown that for thin island Al films on Si(111), the dependence of the number of crystallization centers and the particle growth rate on the supercooling temperature is consistent with the band model of crystallization. At the same time, a shift in the characteristic temperatures for the zone boundaries is observed due to the properties of the substrate. This must be taken into account when engineering the surface morphology and structural perfection of crystallites in Al island magnetron films.

Full Text

Restricted Access

About the authors

A. A. Lomov

Valiev Institute of Physics and Technology of the Russian Academy of Sciences

Author for correspondence.
Email: apbblinov@yandex.ru
Russian Federation, Moscow

D. M. Zakharov

Valiev Institute of Physics and Technology of the Russian Academy of Sciences

Email: apbblinov@yandex.ru
Russian Federation, Moscow

M. A. Tarasov

Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences

Email: apbblinov@yandex.ru
Russian Federation, Moscow

A. M. Chekushkin

Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences

Email: apbblinov@yandex.ru
Russian Federation, Moscow

A. A. Tatarintsev

Valiev Institute of Physics and Technology of the Russian Academy of Sciences

Email: apbblinov@yandex.ru
Russian Federation, Moscow

A. L. Vasiliev

Kurchatov Institute

Email: apbblinov@yandex.ru
Russian Federation, Moscow

References

  1. Alferov Zh.I. Double heterostructures: concept and applications // Uspehy fizicheskikh nauk. 2002. Т. 172, No 9. P. 1068–1086. (Russian). https://doi.org/10.3367/UFNr.0172.200209e.1068
  2. Saini S., Ashok P.A. Verma. Dynamic multi-color switching using ultrathin vanadium oxide on aluminum-based asymmetric Fabry–Pérot resonant structure // Appl. Phys. Lett. 2024. V. 124. P. 011105. https://doi.org/10.1063/5.0175803
  3. Hass G., Francombe M.H., Vossen J.L. Physics of Thin Films-Advances in Research and Development. Academic Press, New York, NY, USA, 2013, ISBN: 9781483144993
  4. Sunil B.S., Bellanger P., Roques S., Slaoui A., Ulyashin A.G.; Leuvrey C., Bjorge A.R. Formation of microcrystalline silicon layer for thin films silicon solar cells on aluminium substrates // IEEE2016 International Renewable and Sustainable Energy Conference — Marrakech, Morocco (2016.11.14–2016.11.17). P. 214–219. https://doi.org/10.1109/IRSEC.2016.7983910
  5. Liao W.-S., Lee Si-Ch. Interfacial interaction between Al-1%Si and phosphorus-doped hydrogenated amorphous Si alloy at low temperature // J. Appl. Phys. 1997. V. 81. P. 7793. https://doi.org/10.1063/1.365389
  6. Barajas-Valdes U., Suárez O.M. Morphological and Structural Characterization of Magnetron-Sputtered Aluminum and Aluminum-Boron Thin Films // Crystals. 2021. V. 11. No 5. P. 492. https://doi.org/10.3390/cryst11050492
  7. Greibe T., Stenberg M., Wilson C., Bauch T., Shumeiko V., Delsing P., Are “pinholes” the cause of excess current in superconducting tunnel junctions? // Phys. Rev. Lett. 2011. V. 106. P. 097001. https://doi.org/10.1103/PhysRevLett.106.097001
  8. Tarasov M., Kuzmin L., Kaurova N., Thin multilayer aluminum structures for superconducting devices // Instrum. Exp. Tech. 2009. V. 52. No 6. P. 877, https://doi.org/10.1134/S0020441209060220
  9. Olausson L., Olausson P., Lind E. Gate-controlled near-surface Josephson junctions // Appl. Phys. Lett. 2024. V. 124. P. 042601. https://doi.org/10.1063/5.0182485
  10. Merkulova I.E., Influence of synthesis parameters and thermal annealing on grain size of polycrystalline aluminum thin film // Journal of Physics: Conference Series. 2021. V. 2119. P. 012121. https://doi.org/10.1088/1742-6596/2119/1/012121
  11. Booth S.E., Marsh C.D., Mallik K., Baranauskas V., Sykes J.M., Wilshaw P.R. Fabrication of nanocrystalline aluminium islands using double-surface anodization // J. Vac. Sci. and Tech. B. 2003. V. 21. P. 316. https://doi.org//10.1116/1.1532025
  12. Khramtsova E.A., Zotov A.V., Saranin A.A., Ryzhkov S.V., Chub A.B., Lifshits V.G. Growth of extra-thin ordered aluminum films on Si(111) surface // Applied Surface Science. 1994. V. 82/83. P. 576–582. https://doi.org/10.1016/0169-4332(94)90278-X
  13. Grupp C., Taleb-Ibrahimi A. Hydrogen passivation at the Al/H: Si(111)-(1×1) interface // Journal of Vacuum Science & Technology A. 1998. V. 16. P. 2683. https://doi.org/10.1116/1.581400
  14. Markov I.V. Crystal Growth for beginners (2nd edn). World Scientific Press. New Jersey, London, Singapure 586, 2003, ISBN981-238-245-3.
  15. Eisenmenger-Sittner C. Growth Control and Thickness Measurement of Thin Films. Encyclopedia of Applied Physics, Wiley-VCH Verlag GmbH & Co. 2019. https://doi.org/10.1002/3527600434.eap809
  16. Lomov A.A., Zakharov D.M., Tarasov M.A., Chekushkin A.M., Tatarintsev A.A., Kiselev D.A., Ilyina T.S., Seleznev A.E. Influence of the homobuffer layer on the morphology, microstructure, and hardness of Al/Si(111) films // Tech. Phys. 2023. V. 68. No 7. P. 833–842. https://doi.org/10.61011/TP.2023.07.56624.83-23
  17. Poate J.M., Tu K.N., Mayer J.W. Thin Films–Interdiffusion and Reactions. John Wiley and Sons, Inc. New York, Chichester, Toronto 578, 1978, ISBN: 9780471022381.
  18. Reed-Hill R.E. Physical Metallurgy Principles (2nd edn). Van Nostrand. USA 920, 1973. ISBN: 9780442268688.
  19. Fortuin A.W., Alkemade P.F.A., Verbruggen A.H., Steinfort A.J., Zandbergen H., Radelaar S. Characterization of single-crystalline A1 films grown on Si(111) // Surface Science. 1996. V. 366. No 2. P. 285–294. https://doi.org/10.1016/0039-6028(96)00824-2
  20. Barmak K., Coffey K. Metallic films for electronic, optical and magnetic applications. Woodhead Publishing Lim., Cambridge, UK, 2013, ISBN978-0-85709-057-7.
  21. Leikin А.Е., Rodin B.I. Materialovedenie. M.: Vishaya Shkola, 416 P. 1971. (Russian)
  22. Movchan B.A., Demchishin A.V. Study of the structure and properties of thick vacuum condesates of nickel, titanium, tungsten, aluminum oxide and zirconium oxide // Phys. Met. Metallogr. 1969. V. 28. No 4. P. 653–660. (Russian)
  23. Ohring M. Materials Science of Thin Films. Deposition and Structure (2nd edn). Academic Press, Hoboken, NJ, USA 794, 2002, ISBN978-0-12-524975-1.
  24. Anders A., A structure zone diagram including plasma-based deposition and ion etching // Thin Solid Films. 2010. V. 518. No 15. P. 4087–4090. https://doi.org/10.1016/j.tsf.2009.10.145
  25. Thornton J.A. High Rate Thick Film Growth / Ann. Rev. Mater. Sci. 1977. V. 7. P. 239–260. https://doi.org/10.1146/annurev.ms.07.080177.001323
  26. Kaiser. N. Review of the fundamentals of thin-film growth // Applied Optics. 2002. V. 41. No 16. P. 3053–3060. https://doi.org/10.1364/AO.41.003053
  27. D’Anterroches C. High resolution TEM study of Al-Si 1% /Si interface (Microsc. Semicond. Mater. Conf., Oxford, 21–23 March, 1983) // Inst. Phys. Conf. Ser. 1983. V. 67: Section 2, 95–102.
  28. Hasan M.-A., Radnoczi G., Sundgren J.-E. Epitaxial growth of Al on Si (100) and Si (111) by evaporation in uhv // Vacuum. 1990. V. 41. No 4–6. P. 11221–11223. https://doi.org/10.1016/0042-207X(90)93886-N
  29. Tjong S.C., Chen H. Nanocrystalline materials and coatings // Materials Science and Engineering. 2004. V. R45. No 1–2. P. 1–88. https://doi.org/10.1016/j.mser.2004.07.001
  30. Wen H.J., Dahne-Prietsch M., Bauer A., Cuberes M.T., Manke I., Kaindl G. Thermal annealing of the epitaxial Al/Si(111)737 interface: Al clustering, interfacial reaction, and Al-induced p+ doping // J. Vac. Sci.Techn. A. 1995. V. 13. P. 2399–2406. https://doi.org/10.1116/1.579480
  31. Sosnowski M., Ramac S., Brown W.L., Kim Y.O. Importance of steps in heteroepitaxy: The case of aluminum on silicon // Appl. Phys. Lett. 1994. V. 65. P. 2943–2945. https//doi.org/10.1063/1.112541
  32. Nakashima P.N.H. The Crystallography of Aluminum and Its Alloys // Encyclopedia of Aluminum and Its Alloys ed. G.E. Totten, M Tiryakioğlu, O. Kessler. Boca Raton: CRC Press, 16 Nov 2018, P. 488–586. https://doi.org/10.1201/9781351045636–140000245
  33. Horio Y. Different Growth Modes of Al on Si(111)7 × 7 and Si(111) √3×√3 –Al Surfaces // Jpn. J. Appl. Phys. 1999. V. 38. No 8. Р. 4881–4886. https://doi.org/10.1143/JJAP.38.4881

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. SEM images of the surface of magnetron films of Al with an average thickness of 20-50 nm formed at steady-state on Si(111) substrate at temperatures: 20 (a), 200 (b), 400 (c) and 500°C (d). Letters B, L and S (c) mark crystallites with characteristic sizes

Download (1MB)
3. Fig. 2. Distribution of the number N(ρ) of Al islands on the Si(111) substrate from the value of the radius ρ of a circle with area equal to the area of the island in the SEM image

Download (201KB)
4. Fig. 3. Diffractograms from Al/Si(111) thin island films sputtered at different substrate temperatures: 20°C (a), 200°C (b), 400°C (c) and 500°C (d). (1) - without fine-tuning the Si(111) substrate, (2) - with fine-tuning the Si(111) substrate. The insets show modelling of the 002 reflection peak by two Voigt curves at 2θ = 44.55° (3) and 44.85° (4). CuKα emission

Download (753KB)
5. Fig. 4. Schematic of PEM experiment (a), light-field PEM image ‘in plan’ of Al film (sample TA6-3) (b) and its electronogram (c)

Download (474KB)
6. Fig. 5. (a) High-resolution light-field STEM images of cross sections of a 23 nm thick Al island film on Si(111) substrate (growth at 400°C): (a) Al island with [001] orientation along [111] normal to the substrate surface; (b) Al island with [111] orientation along [111] normal to the substrate surface. Two-dimensional Fourier spectra from the corresponding crystal lattices of the Al islands (top) and the substrate (bottom) are shown in the right insets

Download (684KB)

Copyright (c) 2024 Russian Academy of Sciences