Electron cyclotron resonance plasma studies using the second cyclotron harmonic resonance
- 作者: Kovalchuk А.V.1, Shapoval S.Y.1
-
隶属关系:
- Institute of Microelectronics Technology and High-Purity Materials, Russian Academy of Sciences
- 期: 卷 53, 编号 5 (2024)
- 页面: 355-361
- 栏目: ДИАГНОСТИКА
- URL: https://rjonco.com/0544-1269/article/view/681351
- DOI: https://doi.org/10.31857/S0544126924050013
- ID: 681351
如何引用文章
详细
Microwave plasma (generation frequency 2.45 GHz, power 200–1000 W, pressure 0.2–10 mTorr) is excited and maintained in two main modes: (1) at continuous microwave power and low magnetic fields (B = 300–450 G) under a superdense (Ne > Ncr = 7.4 ´ 1010 cm−3) plasma and low plasma density (Ne < Ncr); and (2) in high magnetic fields (B = 750–1000 G), close to the ECR condition. The peculiarities of plasma generation under the ECR condition and at the second harmonic of cyclotron resonance are studied.
全文:

作者简介
А. Kovalchuk
Institute of Microelectronics Technology and High-Purity Materials, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: anatoly-fizmat@mail.ru
俄罗斯联邦, Chernogolovka
S. Shapoval
Institute of Microelectronics Technology and High-Purity Materials, Russian Academy of Sciences
Email: shapoval@iptm.ru
俄罗斯联邦, Chernogolovka
参考
- Celona L., Gammino S., Ciavola G., Maimone F., Mascali D. Microwave to plasma coupling in electron cyclotron resonance and microwave ion sources (invited). Rev. Sc. Instrum., 81 (2), 02A333 (2010). doi: 10.1063/1.3265366
- Shapoval S., Bulkin P., Chumakov A., Khudobin S., Maximov I., Mikhailov G. Compact ECR-source of ions and radicals for semiconductor surface treatment. Vacuum, 43 (3), 195 (1992). https://doi.org/10.1016/0042-207X(92)90260-4
- Polushkin E.A., Nefed’ev S.V., Koval’chuk A.V. et al. Hydrogen Plasma under Conditions of Electron-Cyclotron Resonance in Microelectronics Technology. Russ Microelectron 52, 195–197 (2023). https://doi.org/10.1134/S1063739723700373
- Shapoval S., Gurtovoi V., Kovalchuk A., Lester F.E., Vertjachih A., Gaquiere C., Theron D. "Improvement of conductivity and breakdown characteristics of AlGaN/GaN HEMT structures in passivation experiments", Proc. SPIE 5023, 10th International Symposium on Nanostructures: Physics and Technology, (11 June 2003). https://doi.org/10.1117/12.511539
- Datlov J., Teichmann J., Zacek F. Regimes of plasma acceleration by inhomogenous high frequency and magnetostatic field in a cavity resonator. Phys. Letters, 17 (1), 30 (1965). https://doi.org/10.1016/0031-9163(65)90634-7
- Celona L., Gammino S., Maimone F., Mascali D., Gambino N. , Miracoli R., and Ciavola G. Observations of resonant modes formation in microwave generated magnetized plasmas. Eur. Phys. J. D, 61(1), 107 (2011). https://doi.org/10.1140/¬epjd/e2010-00244-y
- Skalyga V.A., Golubev S.V., Izotov I.V., Lapin R.L., Razin S.V., Sidorov A.V., and Shaposhnikov R. A. High-current pulsed ECR ion sources. Prikl. Fiz., 1, 17 (2019). https://applphys.orion-ir.ru/appl-19/19-1/PF-19-1-17.pdf
- Tulle P.A. Off-resonance microwave-created plasmas. Plasma Phys., 15 (10), 971 (1973). doi: 10.1088/0032-1028/15/10/003
- Morito M., and Ken’ichi O. Ion extraction from microwave plasma excited by ordinary and extraordinary waves and applications to the sputtering deposition. J . Vac. Sci. Technol. A, 9, 691 (1991). https://doi.org/10.1116/1.577345
- Kovalchuk A., Beshkov G., Shapoval S. Dehydrogenation of Low-Temperature ECR-Plasma Silicon Nitride Films under Rapid Thermal Annealing. J. Res. Phys., 31 (1), 37–46 (2007). https://www.researchgate.net/publication/277125029_Dehydrogenation_of_low-temperature_ECR-plasma_silicon_nitride-_films_under_rapid_thermal_annealing
- Райзер Ю.П. Физика газового разряда, Глава 8, § 5, пункт 5.3., 199 («Наука», Физматлит 1992) ISBN: 5-02-014615-3. https://studizba.com/files/show/djvu/2107-1-rayzer-yu-p--fizika-gazovogo-razryada.html (in Russian)
- Райзер Ю.П. Физика газового разряда, Глава 15, § 4, пункт 4.3., 479 («Наука», Физматлит 1992) ISBN: 5-02-014615-3. https://studizba.com/files/show/djvu/2107-1-ray¬zer-yu-p--fizika-gazovogo-razryada.html (in Russian)
- Shapoval S.Y., Petrashov V.T., Popov O.A, Yoder M.D., Maciel P.D., and Lok C.K.C. Electron cyclotron resonance plasma chemical vapor deposition of large area uniform silicon nitride films. J . Vac. Sci. Technol. A, 9 (6), 3071 (1991). doi: 10.1116/1.577175
- Salahshoor M., Aslaninejad M. Resonance surface, microwave power absorption, and plasma density distribution in an electron cyclotron resonance ion source. Phys. Rev. Accel. Beams, 22 (4), 043402 (2019). doi: 10.1103/PhysRevAccelBeams.22.043402
- Roychowdhury P., Mishra L., Kewlani H., Gharat S. Hydrogen Plasma Characterization at Low Pressure in 2.45 GHz Electron Cyclotron Resonance Proton Ion Source. IEEE Transactions on Plasma Science, 45 (4), 665 (2017). doi: 10.1109/TPS.2017.2679758
- Gallo C.S., Galata A., Mascali D., Torrisi G. A possible optimization of electron cyclotron resonance ion sources plasma chambers. 23th Int. Workshop on ECR Ion Sources, 67 (Catania, Italy, ECRIS 2018). https://accelconf.web.cern.ch/ecris2018/papers/tub3.pdf
- Qian Y. Jin, Yu G. Liu, Yang Z., Qi Wu, Yao J. Zhai and Liang T. Sun. RF and Microwave Ion Sources Study at Institute of Modern Physics. Plasma, 4 (2), 332 (2021). https://doi.org/10.3390/plasma4020022
- Mauro G.S., Torrisi G., Leonardi O., Pidatella A., Sorbello G., and Mascali D. Design and Analysis of Slotted Waveguide Antenna Radiating in a “Plasma-Shaped” Cavity of an ECR Ion Source. MDPI Telecom, 2 (1), 42 (2021). https://doi.org/10.3390/telecom-2010004
- Tsybin O.Yu., Makarov S.B., Dyubo D.B., Kuleshov Yu.V., Goncharov P.S., Martynov V.V., Shunevich N.A. An electrically powered ion accelerator with contact ionization for perspective electrically powered thrusters. St. Petersburg Polytechnical State University Journal. Physics and Mathematics, 13 (2), 99 (2020). https://physmath.spbstu.ru/en/article/2020.48.08/
- Lax B., Allis W.P. and Brown S.C. The effect of magnetic field on the breakdown of gases at microwave frequencies. J. Appl. Phys., 21, 1297 (1950). doi: 10.1063/1.1699594
- Popov O.A. Characteristics of electron cyclotron resonance plasma sources. J. Vac. Sci. Technol. A, 7 (3), 894 (1989). https://doi.org/10.1116/1.575816
- Shapoval S.Y., Petrashov V.T., Popov O.A., Yoder M.D.Jr., Maciel P.D., and Lok C.K.C. Electron cyclotron resonance plasma chemical vapor deposition of large area uniform silicon nitride films. J. Vac. Sci. Technol. A, 9(6), 3071 (1991). https://doi.org/10.1116/1.577175
- Ginzburg V.L. The Propagation of Electromagnetic Waves in Plasmas 2nd ed. (Pergamon Press, Oxford, 1970) ISBN: 0080155693; Russian original:, V. L. Ginzburg. The Propagation of Electromagnetic Waves in Plasmas 2nd ed. (Nauka, Moscow, 1967). https://www.studmed.ru/ginzburg-vl-rasprostranenie-elektromagnitnyh-voln-v-plazme_729023ed3e1.html
- Popov O.A., Shapoval S.Y. and Yoder M.D.Jr. 2.45 GHz microwave plasmas at magnetic fields below ECR. Plasma Sources Sci. Technol., 1 (1), 7 (1992). doi: 10.1088/0963-0252/1/1/002
- Popov O.A., Shapoval S.Y. and Yoder M.D., and Chumakov A.A. Electron cyclotron resonance plasma source for metalorganic chemical vapor deposition of silicon oxide films. J. Vac. Sci. Technol. A, 12(2), 300 (1994). https://doi.org/10.1116/1.578872
- Stix T.H. The Theory of Plasma Waves (McGraw-Hill, New York, 1962) ASIN: B0006AY0IW. https://babel.hathitrust.-org/cgi/pt?id=uc1.b3754096&view=1up&seq=9
补充文件
