Electron cyclotron resonance plasma studies using the second cyclotron harmonic resonance

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Microwave plasma (generation frequency 2.45 GHz, power 200–1000 W, pressure 0.2–10 mTorr) is excited and maintained in two main modes: (1) at continuous microwave power and low magnetic fields (B = 300–450 G) under a superdense (Ne > Ncr = 7.4 ´ 1010 cm−3) plasma and low plasma density (Ne < Ncr); and (2) in high magnetic fields (B = 750–1000 G), close to the ECR condition. The peculiarities of plasma generation under the ECR condition and at the second harmonic of cyclotron resonance are studied.

全文:

受限制的访问

作者简介

А. Kovalchuk

Institute of Microelectronics Technology and High-Purity Materials, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: anatoly-fizmat@mail.ru
俄罗斯联邦, Chernogolovka

S. Shapoval

Institute of Microelectronics Technology and High-Purity Materials, Russian Academy of Sciences

Email: shapoval@iptm.ru
俄罗斯联邦, Chernogolovka

参考

  1. Celona L., Gammino S., Ciavola G., Maimone F., Mascali D. Microwave to plasma coupling in electron cyclotron resonance and microwave ion sources (invited). Rev. Sc. Instrum., 81 (2), 02A333 (2010). doi: 10.1063/1.3265366
  2. Shapoval S., Bulkin P., Chumakov A., Khudobin S., Maximov I., Mikhailov G. Compact ECR-source of ions and radicals for semiconductor surface treatment. Vacuum, 43 (3), 195 (1992). https://doi.org/10.1016/0042-207X(92)90260-4
  3. Polushkin E.A., Nefed’ev S.V., Koval’chuk A.V. et al. Hydrogen Plasma under Conditions of Electron-Cyclotron Resonance in Microelectronics Technology. Russ Microelectron 52, 195–197 (2023). https://doi.org/10.1134/S1063739723700373
  4. Shapoval S., Gurtovoi V., Kovalchuk A., Lester F.E., Vertjachih A., Gaquiere C., Theron D. "Improvement of conductivity and breakdown characteristics of AlGaN/GaN HEMT structures in passivation experiments", Proc. SPIE 5023, 10th International Symposium on Nanostructures: Physics and Technology, (11 June 2003). https://doi.org/10.1117/12.511539
  5. Datlov J., Teichmann J., Zacek F. Regimes of plasma acceleration by inhomogenous high frequency and magnetostatic field in a cavity resonator. Phys. Letters, 17 (1), 30 (1965). https://doi.org/10.1016/0031-9163(65)90634-7
  6. Celona L., Gammino S., Maimone F., Mascali D., Gambino N. , Miracoli R., and Ciavola G. Observations of resonant modes formation in microwave generated magnetized plasmas. Eur. Phys. J. D, 61(1), 107 (2011). https://doi.org/10.1140/¬epjd/e2010-00244-y
  7. Skalyga V.A., Golubev S.V., Izotov I.V., Lapin R.L., Razin S.V., Sidorov A.V., and Shaposhnikov R. A. High-current pulsed ECR ion sources. Prikl. Fiz., 1, 17 (2019). https://applphys.orion-ir.ru/appl-19/19-1/PF-19-1-17.pdf
  8. Tulle P.A. Off-resonance microwave-created plasmas. Plasma Phys., 15 (10), 971 (1973). doi: 10.1088/0032-1028/15/10/003
  9. Morito M., and Ken’ichi O. Ion extraction from microwave plasma excited by ordinary and extraordinary waves and applications to the sputtering deposition. J . Vac. Sci. Technol. A, 9, 691 (1991). https://doi.org/10.1116/1.577345
  10. Kovalchuk A., Beshkov G., Shapoval S. Dehydrogenation of Low-Temperature ECR-Plasma Silicon Nitride Films under Rapid Thermal Annealing. J. Res. Phys., 31 (1), 37–46 (2007). https://www.researchgate.net/publication/277125029_Dehydrogenation_of_low-temperature_ECR-plasma_silicon_nitride-_films_under_rapid_thermal_annealing
  11. Райзер Ю.П. Физика газового разряда, Глава 8, § 5, пункт 5.3., 199 («Наука», Физматлит 1992) ISBN: 5-02-014615-3. https://studizba.com/files/show/djvu/2107-1-rayzer-yu-p--fizika-gazovogo-razryada.html (in Russian)
  12. Райзер Ю.П. Физика газового разряда, Глава 15, § 4, пункт 4.3., 479 («Наука», Физматлит 1992) ISBN: 5-02-014615-3. https://studizba.com/files/show/djvu/2107-1-ray¬zer-yu-p--fizika-gazovogo-razryada.html (in Russian)
  13. Shapoval S.Y., Petrashov V.T., Popov O.A, Yoder M.D., Maciel P.D., and Lok C.K.C. Electron cyclotron resonance plasma chemical vapor deposition of large area uniform silicon nitride films. J . Vac. Sci. Technol. A, 9 (6), 3071 (1991). doi: 10.1116/1.577175
  14. Salahshoor M., Aslaninejad M. Resonance surface, microwave power absorption, and plasma density distribution in an electron cyclotron resonance ion source. Phys. Rev. Accel. Beams, 22 (4), 043402 (2019). doi: 10.1103/PhysRevAccelBeams.22.043402
  15. Roychowdhury P., Mishra L., Kewlani H., Gharat S. Hydrogen Plasma Characterization at Low Pressure in 2.45 GHz Electron Cyclotron Resonance Proton Ion Source. IEEE Transactions on Plasma Science, 45 (4), 665 (2017). doi: 10.1109/TPS.2017.2679758
  16. Gallo C.S., Galata A., Mascali D., Torrisi G. A possible optimization of electron cyclotron resonance ion sources plasma chambers. 23th Int. Workshop on ECR Ion Sources, 67 (Catania, Italy, ECRIS 2018). https://accelconf.web.cern.ch/ecris2018/papers/tub3.pdf
  17. Qian Y. Jin, Yu G. Liu, Yang Z., Qi Wu, Yao J. Zhai and Liang T. Sun. RF and Microwave Ion Sources Study at Institute of Modern Physics. Plasma, 4 (2), 332 (2021). https://doi.org/10.3390/plasma4020022
  18. Mauro G.S., Torrisi G., Leonardi O., Pidatella A., Sorbello G., and Mascali D. Design and Analysis of Slotted Waveguide Antenna Radiating in a “Plasma-Shaped” Cavity of an ECR Ion Source. MDPI Telecom, 2 (1), 42 (2021). https://doi.org/10.3390/telecom-2010004
  19. Tsybin O.Yu., Makarov S.B., Dyubo D.B., Kuleshov Yu.V., Goncharov P.S., Martynov V.V., Shunevich N.A. An electrically powered ion accelerator with contact ionization for perspective electrically powered thrusters. St. Petersburg Polytechnical State University Journal. Physics and Mathematics, 13 (2), 99 (2020). https://physmath.spbstu.ru/en/article/2020.48.08/
  20. Lax B., Allis W.P. and Brown S.C. The effect of magnetic field on the breakdown of gases at microwave frequencies. J. Appl. Phys., 21, 1297 (1950). doi: 10.1063/1.1699594
  21. Popov O.A. Characteristics of electron cyclotron resonance plasma sources. J. Vac. Sci. Technol. A, 7 (3), 894 (1989). https://doi.org/10.1116/1.575816
  22. Shapoval S.Y., Petrashov V.T., Popov O.A., Yoder M.D.Jr., Maciel P.D., and Lok C.K.C. Electron cyclotron resonance plasma chemical vapor deposition of large area uniform silicon nitride films. J. Vac. Sci. Technol. A, 9(6), 3071 (1991). https://doi.org/10.1116/1.577175
  23. Ginzburg V.L. The Propagation of Electromagnetic Waves in Plasmas 2nd ed. (Pergamon Press, Oxford, 1970) ISBN: 0080155693; Russian original:, V. L. Ginzburg. The Propagation of Electromagnetic Waves in Plasmas 2nd ed. (Nauka, Moscow, 1967). https://www.studmed.ru/ginzburg-vl-rasprostranenie-elektromagnitnyh-voln-v-plazme_729023ed3e1.html
  24. Popov O.A., Shapoval S.Y. and Yoder M.D.Jr. 2.45 GHz microwave plasmas at magnetic fields below ECR. Plasma Sources Sci. Technol., 1 (1), 7 (1992). doi: 10.1088/0963-0252/1/1/002
  25. Popov O.A., Shapoval S.Y. and Yoder M.D., and Chumakov A.A. Electron cyclotron resonance plasma source for metalorganic chemical vapor deposition of silicon oxide films. J. Vac. Sci. Technol. A, 12(2), 300 (1994). https://doi.org/10.1116/1.578872
  26. Stix T.H. The Theory of Plasma Waves (McGraw-Hill, New York, 1962) ASIN: B0006AY0IW. https://babel.hathitrust.-org/cgi/pt?id=uc1.b3754096&view=1up&seq=9

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Experimental setup with plasma discharge generation under ECR conditions: f = 2.45 GHz, Br = 875 Gs. To control the energy of positively charged ions, an RF voltage with a controlled amplitude is applied to the substrate holder (Si, GaAs or Al2O3 plate). A gas ring is used to organize a uniform distribution of the trimethylgallium and trimethylaluminum molecule flow over the sapphire substrate surface during the epitaxial deposition of GaN and AlxGa1-xN layers.

下载 (175KB)
3. Fig. 2. Distribution of the magnetic field on the reactor axis depending on the distance to the edge of the energy input window. In the experiments, the region Z = [5, 6] cm was used to ensure the formation of a homogeneous plasma mode.

下载 (103KB)
4. Fig. 3. Dependence of the plasma probe saturation current on the magnetic field strength in the “shelf” interval (see Fig. 2). Pf = 500 W, Pref = 50 W, nitrogen pressure 1 mTorr. When rebuilding the magnetic field to determine the dependence of the probe saturation current on the magnetic field, the coil currents were changed proportionally in order to maintain the field strength distribution. The reflected power Pref was maintained at 50 W by an automatic tuner.

下载 (99KB)
5. Fig. 4. Dependences of the ion saturation current of the Jion probe on the absorbed microwave power Pabs = (Pf–Pref) in N2 plasma. Nitrogen pressure p = 1 mTorr.

下载 (92KB)
6. Fig. 5. Dependence of the saturation current of the Jion plasma probe on the nitrogen pressure in the reactor. Incident power Pf = 500 W. Reflected power Pref = 50 W. Magnetic field on the reactor axis B = Br /2 = 438 Gs.

下载 (83KB)
7. Fig. 6. Dependence of plasma density on nitrogen pressure in the reactor. Incident power Pf = 500 W. Reflected power Pref = 50 W, Magnetic field on the reactor axis B = Br = 875 Gs. The electron gas concentration was calculated from microwave interferometry data.

下载 (90KB)

版权所有 © Russian Academy of Sciences, 2024