New concept for the development of high-performance X-ray lithography
- Authors: Chkhalo N.I.1
-
Affiliations:
- Federal State Budgetary Scientific Institution “Federal Research Center Institute of Applied Physics named after. A. V. Gaponova-Grekhov Russian Academy of Sciences”
- Issue: Vol 53, No 5 (2024)
- Pages: 375-388
- Section: ЛИТОГРАФИЯ
- URL: https://rjonco.com/0544-1269/article/view/681353
- DOI: https://doi.org/10.31857/S0544126924050038
- ID: 681353
Cite item
Abstract
A brief overview of the current state of extreme ultraviolet (UV, EUV in English transcription), or, also, X-ray lithography at a wavelength of 13.5 nm in the world is given. The problems and prospects for the development of this technology in the coming years are discussed. A new concept of X-ray lithography in Russia is being developed at the Institute of Microstructure Physics of the Russian Academy of Sciences. The substantiation of the advantages and prospects of the feasibility of lithography at a wavelength new to lithography of 11.2 nm is given. A brief overview of the domestic level of development of critical technologies necessary for the creation of an X-ray lithograph is given.
Full Text

About the authors
N. I. Chkhalo
Federal State Budgetary Scientific Institution “Federal Research Center Institute of Applied Physics named after. A. V. Gaponova-Grekhov Russian Academy of Sciences”
Author for correspondence.
Email: chkhalo@ipmras.ru
Institute of Physics of Microstructures of the Russian Academy of Sciences
Russian Federation, Nizhny Novgorod regionReferences
- Reynolds G.O. A concept for a high resolution, optical lithographic system for producing one-half micron linewidths // Proc. SPIE. 1986. V. 633. P. 228–238.
- Kim K., Chung U-In., Park Y., Lee J., Yeo L., Kim D. Extending the DRAM and FLASH memory technologies to 10 nm and beyond // Optical Microlithography XXV. Proc. SPIE. 2012. V. 8326. P. 46–56. https://doi.org/10.1117/12.920053.
- Tritchkov A., Jeong S., and C. Kenyon C. Lithography Enabling for the 65 nm node gate layer patterning with Alternating PSM // Proc. SPIE. 2005. V. 5754. P. 215–225.
- Hazelton A.J., Wakamoto S., Hirukawa S., McCallum M., Magome N., Ishikawa J., Lapeyre C., Guilmeau I., Barnola S., and S. Gaugiran S. Double patterning requirements for optical lithography and prospects for optical extension with double patterning // Proc. SPIE. 2008. V. 6924. P. 69240R.
- Starikov A. Use of a single size square serif for variable print bias compensation in microlithography: method, design and practice // Proc. SPIE. 1989. V. 1088. P. 34–46.
- Allenet T., Vockenhuber M., Yeh C.K., Santaclara J.G., van Lent-Protasov L., Ekinci Y., Kazazis D. EUV resist screening update: progress towards High-NA lithography // Advances in Patterning Materials and Processes XXXIX, edited by Daniel P. Sanders, Douglas Guerrero, Proc. SPIE. 2022. V. 12055. P. 120550F.
- Duv lithography systems twinscan nxt: 2000i; https://www.asml.com/en/products/duv-lithography-systems/twinscan-nxt2000i
- Kinoshita H., Kurihara K., Ishii Y., Torii Y. // Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena. 1989. V. 7. № 6. P. 1648–1651. https://doi.org/10.1116/1.584507
- Tichenor D.A., Ray-Chaudhuri A.K., Replogle W.C., Stulen R.H., Kubiak G.D., Rockett P.D., Klebanoff L.E., Jefferson K.J., Leung A.H., Wronosky J.B., Hale L.C., Chapman H.N., Taylor J.S., Folta J.A., Montcalm C., Soufli R., Spiller E.A., Blaedel K.L., Sommargren G.E., Sweeney D.W., Naulleau P.P., Goldberg K.A., Gullikson E.M., Bokor J., Batson P.J., Attwood Jr.D.T., Jackson K.H., Hector S.D., Gwyn C.W., Yan P.Y. System integration and performance of the EUV engineering test stand // Proc. SPIE. 2001. V. 4343. P. 19.
- Uzawa S., KuboH., Miwa Y., Tsuji T., Morishima H. Path to the HVM in EUVL through the development and evaluation of the SFET // Emerging Lithographic Technologies XI. – SPIE. 2007. V. 6517. P. 72–81. https://doi.org/10.1117/12.711650
- Meiling H., Boon E., Buzing N., Cummings K., Frijns O., Galloway J., Goethals M., Harned N., Hultermans B., de Jonge R., Kessels B., Kurz P., Lok S., Lowisch M., Mallman J., Pierson B., Ronse K., Ryan J., Smitt-Weaver E., Tittnich M., Wagner C., van Dijk A., Zimmermann J. Performance of the full field EUV systems // Emerging Lithographic Technologies XII. – SPIE. 2008. V. 6921. P. 171–183. https://doi.org/10.1117/12.773259
- Volgunov D G., Zabrodin I.G., Zakalov B.A., Zuev S.Yu., Kas’kov I.A., Kluenkov E.B., Toropov M.N., and Chkhalo N.I. A Stand for a Projection EUV Nanolithographer–Multiplicator with a Design Resolution of 30 nm // Bulletin of the Russian Academy of Sciences: Physics. 2011. V. 75. № 1. P. 49–52.
- Glatzel H., Ashworth D., Bremer M., Chin R., Cummings K., Girard L., Goldstein M., Gullikson E., Hudyma R., Kennon J., Kestner B., Marchetti L., Naulleau P., Soufli R., Spiller E. Projection Optics for Extreme Ultraviolet Lithography (EUVL) Microfield Exposure Tools (METs) with a Numerical Aperture of 0.5 // Proc. SPIE Advanced Lithography. 2013. V. 8679. P. 42.
- Watanabe T., Harada T., Yamakawa S. Fundamental research activities on EUV lithography at NewSUBARU synchrotron light facility // Proc. SPIE. 2021. V. 11908. P. 1190807. doi: 10.1117/12.2600896
- Optical and EUV Nanolithography XXXVI, edited by Anna Lio // Proc. SPIE. 2023. V. 12494. P. 1249406.
- Макушкин М., Мартынов В. Нужен ли России самодельный EUV-нанолитограф // Фотоника. 2010. № 4. С. 6–13.
- Wu B. and Kumar A. Extreme ultraviolet lithography and three dimensional integrated circuits-A review // Appl. Phys. Rew. 2014. V. 1. P. 011104.
- van de Kerkhof M., Jasper H., Levasier L., Peeters R., van Es R., Bosker J.W., Zdravkov A., Lenderink E., Evangelista F., Broman P., Bilski B., Last T. Enabling sub-10nm node lithography: presenting the NXE: 3400B EUV scanner // Proc. SPIE. 2017. V. 10143. P. 101430D.
- Levinson H. Principles of Lithography, 4th Edition. SPIE. 2019. P. 524. https://www.atomic-energy.ru/news/2023/03/15/133578
- Chkhalo N.I., Durov K.V., Nechay A.N., Perekalov A.A., Polkovnikov V.N., and Salashchenko N.N. On the Prospects of Lithography in the Region of Wavelengths Shorter than 13.5 nm // Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2023. V. 17. No 1. P. S226–S232.
- Chkhalo N.I., and Salashchenko N.N. Current State and Prospects for the Development of X-Ray Lithography // Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2023. V. 17. No 1. P. 307–316. doi: 10.1134/S1027451022060349
- Wood O., Arnold J., Brunner T., Burkhardt M. Insertion strategy for EUV lithography // Proc. of SPIE. 2012. V. 8322. P. 832203. doi: 10.1117/12.916292
- Yakshin A.E., van de Kruijs R.W.E., Nedelcu I., Zoethout E., Louis E., Bijkerk F., Enkisch H., and Müllender S. Enhanced reflectance of interface engineered Mo/Si multilayers produced by thermal particle deposition // Proc. SPIE. 2007. V. 6517. P. 65170I.
- Chkhalo N., Gusev S., Nechay A., Pariev D., Polkovnikov V., Salashchenko N., Schäfers F., Sertsu M., Sokolov A., Svechnikov M., and Tatarsky D. High reflective Mo/Be/Si multilayers for the EUV lithography // Optics Letters. 2017. V. 42. Iss. 24. P. 5070–5073. https://doi.org/10.1364/OL.42.005070
- Fomenkov I., Brandt D., Ershov A., Schafgans A., Tao Y., Vaschenko G., Rokitski S., Kats M., Vargas M., Purvis M., Rafac R., La Fontaine B., De Dea S., LaForge A., Stewart J., Chang S., Graham M., Riggs D., Taylor T., Abraham M., and Brown D. Light sources for high-volume manufacturing EUV lithography: technology, performance, and power scaling // Advanced Optical Technologies. 2017. V. 6. No 3–4. P. 173–186. https://doi.org/10.1515/aot-2017–0029
- Абраменко Д.Б., Анциферов П.С., Астахов Д.И., Виноходов А.Ю., Вичев И.Ю., Гаязов Р.Р., Грушин А.С., Дорохин Л.А., Иванов В.В., Ким Д.А., Кошелев К.Н., Крайнов П.В., Кривокорытов М.С. Кривцун В.М., Лакатош Б.В., Лаш А.А., Медведев В.В., Рябцев А.Н., Сидельников Ю.В., Снегирев Е.П., Соломянная А.Д., Спиридонов М.В., Цыгвинцев И.П., Якушев О.Ф., Якушкин А.А. Плазменные источники экстремального ультрафиолетового излучения для литографии и сопутствующих технологических процессов (к 50-летию Института спектроскопии РАН // УФН. 2019. Т. 189. № 3. С. 323–334. doi: 10.3367/UFNr.2018.06.038447
- Brandt D.C., Fomenkov I.V., Farrar N.R., La Fontaine B., Myers D.W., Brown D.J., Ershov A.I., Bowering N.R., Riggs D.J., Rafac R.J., De Dea S., Peeters R., Meiling H., Hamed N., Smith D., Pirati A., Kazinczi R. LPP EUV source readiness for NXE3300 B // Proc. of SPIE, Extreme Ultraviolet (EUV) Lithography V’, Eds. by O. R. Wood II and E. M. Panning. 2014. V. 9048. P. 90480C-1.
- van de Kerkhof M., Jasper H., Levasier L., Peeters R., van Es R., Bosker J.W., Zdravkov A., Lenderink E., Evangelista F., Broman P., Bilski B., Last T. Enabling sub-10nm node lithography: presenting the NXE:3400B EUV scanner // Proc. SPIE. 2017. V. 10143. P. 101430D.
- Зуев С.Ю., Лопатин А.Я., Лучин В.И., Салащенко Н.Н., Цыбин Н.Н., Чхало Н.И. Защитные свободновисящие пленки для установок проекционной литографии экстремального ультрафиолетового диапазона // Микроэлектроника. 2023. Т. 52. № 5. С. 354–366. EDN: https://elibrary.ru/QAIWGO, doi: 10.31857/S0544126923700539
- Nan Lin, Yunyi Chen, Xin Wei, Wenhe Yang and Yuxin Leng. Spectral purity systems applied for Laser-produced plasma Extreme UltraViolet (LPP-EUV) lithography source: a review // High Power Laser Science and Engineering. 2023. V. 11. No 5. P. 05000e64.
- Platonov Y., Kriese M., Crucet R., Li Y., Martynov V., Jiang L., Rodriguez J., Mueller U., Daniel J., Khatri S., Magruder A., Grantham S., Tarrio C., Lucatorto T.B. Collector development with IR suppression and EUVL optics refurbishment at RIT // https://www.euvlitho.com/2013/S30.pdf (Dublin, November 3–7, 2013).
- Pirati A., Peeters R., Smith D., Lok S., van Noordenburg M., van Es R., Verhoeven E., Meijer H., Minnaert A., van der Horst J.W., Meiling H., Mallmann J., Wagner C., Stoeldraijer J., Fisser G., Finders J., Zoldesi C., Stamm U., Boom H., Brandt D., Brown D., Fomenkov I., Purvis M. EUV lithography performance for manufacturing: status and outlook // Proc. of SPIE, Extreme Ultraviolet (EUV) Lithography VII, Eds. by E. M. Panning and K. A. Goldberg. 2016. V. 9776. P. 97760A-1. https://doi.org/10.1117/12.2220423
- Naulleau P.P., Niakoula D., and Zhang G. System-level lineedge roughness limits in extreme ultraviolet lithography // J. Vac. Sci. Technol. B. 2008. V. 26(4). P. 1289–1293.
- Торопов М.Н., Ахсахалян А.А., Зорина М.В., Салащенко Н.Н., Чхало Н.И., Токунов Ю.М. Получение гладких высокоточных поверхностей методом механического притира // Журнал технической физики. 2020. Т. 90. Вып. 11. С. 1958–1964.
- Чхало Н.И., Малышев И.В., Пестов А.Е., Полковников В.Н., Салащенко Н.Н., Торопов М.Н. Рентгеновская оптика дифракционного качества: технология, метрология, применения // УФН. 2020. Т. 190 (1). С. 74–91. https://doi.org/10.3367/UFNr.2019.05.038601
- Akhsakhalyan A.A., Chkhalo N.I., Kumar N., Malyshev I.V., Pestov A.E., Salashchenko N.N., Toropov M.N., Ulasevich B.A., Kuzin S.V. Compact high-aperture interferometer with a diffractive reference wave for high-precision referenceless aberration measurements of optical elements and systems // Precision Engineering. 2021. V. 72. P. 330–339. https://doi.org/10.1016/j.precisioneng.2021.05.011
- Toropov M., Chkhalo N., Malyshev I., and Salashchenko N. High-aperture low-coherence interferometer with a diffraction reference wave // Optics Letters. 2022. V. 47. No 14. P. 3459–3462. https://doi.org/10.1364/OL.460708
- Chkhalo N.I., Salashchenko N.N. and Zorina M.V. Note: A stand on the basis of atomic force microscope to study substrates for imaging optics // Rev. Sci. Instrum. 2015. V. 86. P. 016102. http://dx.doi.org/10.1063/1.4905336.
- Chkhalo N.I., Kaskov I.A., Malyshev I.V., Mikhaylenko M.S., Pestov A.E., Polkovnikov V.N., Salashchenko N.N., Toropov M.N., Zabrodin I.G. High-performance facility and techniques for high-precision machining of optical components by ion beams // Precision Engineering. 2017. V. 48. P. 338–346. DOI: http://dx.doi.org/10.1016/j.precisioneng.2017.01.004
- Smertin R.M., Chkhalo N.I., Drozdov M.N., Garakhin S.A., Zuev S.Yu., Polkovnikov V.N., Salashchenko N.N., and Yunin P.A. Influence of Mo interlayers on the microstructure of layers and reflective characteristics of Ru/Be multilayer mirros // Opt. Express. 2022. V. 30. No 26. P. 46749–46761.
- Chkhalo N.I., Garakhin S.A., Golubev S.V., Lopatin A.Ya., Nechay A.N., Pestov A.E., Salashchenko N.N., Toropov M.N., Tsybin N.N., Vodopyanov A.V., and Yulin S. A double-stream Xe: He jet plasma emission in the vicinity of 6.7 nm // Appl. Phys. Lett. 2018. V. 112. P. 221101. doi: 10.1063/1.5016471
- Chkhalo N.I., Garakhin S.A., Lopatin A.Ya., Nechay A.N., Pestov A.E., Polkovnikov V.N., Salashchenko N.N., Tsybin N.N., and Zuev S.Yu. Conversion efficiency of a laser-plasma source based on a Xe jet in the vicinity of a wavelength of 11 nm // AIP Advances. 2018. V. 8. P. 105003. doi: 10.1063/1.5048288
- Nechay A.N., Perekalov A.A., Chkhalo N.I., Salashchenko N.N., Korepanov M.A., Koroleva M.R. Emission properties of targets based on shock waves excited by pulsed laser radiation // Optics & Laser Technology. 2021. V. 142. P. 107250. https://doi.org/10.1016/j.optlastec.2021.107250
- Guseva V.E., Nechay A.N., Perekalov A.A., Salashchenko N.N., Chkhalo N.I. Investigation of emission spectra of plasma generated by laser pulses on Xe gas-jet targets // Applied Physics B. 2023. V. 129. No 155. https://doi.org/10.1007/s00340–023–08095–8
- Kalmykov S.G., Butorin P.S., Sasin M.T. Xe laser-plasma EUV radiation source with a wavelength near 11 nm – Optimization and conversion efficiency // JAP. 2019. V. 126 (10). P. 103301.
- Волков М.Р., Кузнецов И.И., Мухин И.Б., Палашов О.В. Дисковые квантроны на основе Yb: YAG для лазеров мультикиловаттной средней мощности // Квантовая электроника. 2019. Т. 49 № 4. С. 354–357.
- Chkhalo N.I., Golubev S.V., Mansfeld D., Salashchenko N.N., Sjmaenok L.A., and Vodopyanov A.V. Source for extreme ultraviolet lithography based on plasma sustained by millimeter-wave gyrotron radiation // J. Micro/Nanolith. MEMS MOEMS. 2012. V. 11. P. 021123. doi: 10.1117/1.JMM.11.2.021123
- Vodop’yanov A.V., Garakhin S.A., Zabrodin I.G., Zuev S.Yu., Lopatin A.Ya., Nechay A.N., Pestov A.E., Perekalov A.A., Pleshkov R.S., Polkovnikov V.N., Salashchenko N.N., Smertin R.M., Ulasevich B.A., N.I. Chkhalo N.I. Measurements of the absolute intensities of spectral lines of Kr, Ar, and O ions in the wavelength range of 10–18 nm under pulsed laser excitation // Quantum Electronics. 2021. V. 51 (8) P. 700–707.
- Антюшин Е.С., Ахсахалян А.А., Зуев С.Ю., Лопатин А.Я., Малышев И.В., Нечай А.Н., Перекалов А.А., Пестов А.Е., Салащенко Н.Н., Торопов М.Н., Уласевич Б.А., Цыбин Н.Н., Чхало Н.И., Соловьев А.А., Стародубцев М.В. Система визуализации плазменного факела бетатронного источника рентгеновского излучения // Журнал технической физики. 2022. Т. 92. № 8. С. 1202–1206. doi: 10.21883/JTF.2022.08.52784.80–22
- Bulgakova S.A., Lopatin A.Ya., Luchin V.I., Mazanova L.M., Molodnjakov S.A., Salashchenko N.N. PMMA-based resists for a spectral range near 13 nm // Nucl. Instrum. and Meth. 2000. A448. P. 487–492.
- Булгакова С.А., Гурова Д.А., Зайцев С.Д., Куликов Е.Е., Скороходов Е.В., Торопов М.Н., Пестов А.Е., Чхало Н.И., Салащенко Н.Н. Влияние полимерной матрицы и фотогенератора кислоты на литографические свойства химически усиленного фоторезиста // Микроэлектроника. 2014. Т. 43. № 6. С. 419–428.
- Min Z., Baoqin C., Changqing X., Ming L., and Jiebing N. Study of process of HSQ in electron beam lithography // 2010 IEEE5th International Conference on Nano/Micro Engineered and Molecular Systems, Xiamen, China. 2010. P. 1021–1024. doi: 10.1109/NEMS.2010.5592584.
- Gusev S A., Zuev S.Yu., Klimov A.Yu., Pestov A.E., Polkovnikov V.N., Rogov V.V., Salashchenko N.N., Skorokhodov E.V., Toropov M.N., and Chkhalo N.I. Reflective Mask for Projection Lithography Operating at a Wavelength of 13.5 nm // Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques. 2012. V. 6. No 4. P. 568–573.
- Chkhalo N.I., Drozdov M.N., Kluenkov E.B., Lopatin A.Ya., Luchin V.I., Salashchenko N.N., Tsybin N.N., Sjmaenok L.A., Banine V.E., Yakunin A.M. Free-standing spectral purity filters for extreme ultraviolet lithography // J. Micro/Nanolith. MEMS MOEMS. 2012. V. 11. No 2. P. 021115 https://doi.org/10.1117/1.JMM.11.2.021115
- Chkhalo N.I., Drozdov M.N., Kluenkov E.B., Kuzin S.V., Lopatin A.Ya., Luchin V.I., Salashchenko N.N., Tsybin N.N., Zuev S.Yu. Thin film multilayer filters for solar EUV telescopes // Applied Optics. 2016. V. 55 (17). P. 4683–4690. doi: 10.1364/AO.55.004683
- Chkhalo N.I., Kluenkov E.B., Lopatin A.Ya., Luchin V.I., Salashchenko N.N., Sjmaenok L.A., N.N. Tsybin N.N. Study of heat induced changes in elastic properties of multilayer Mo/ZrSi2 membranes // Thin Solid Films. 2017. V. 631. P. 93–98. https://doi.org/10.1016/j.tsf.2017.04.015
- Malyshev I.V., Reunov D.G., Chkhalo N.I., Toropov M.N., Pestov A.E., Polkovnikov V.N., Tsybin N.N., Lopatin A.Ya., Chernyshev A.K., Mikhailenko M.S., Smertin R.M., Pleshkov R.S., and Shirokova O.M. High-aperture EUV microscope using multilayer mirrors and a 3D reconstruction algorithm based on z-tomography // Optics Express. 2022. V. 30. No 26. P. 47567–47586. https://doi.org/10.1364/OE.475032
Supplementary files
