Influence of Manufacture Imperfections and Electrical Noise on Evolution of a Charge Qubit under Optical Control
- Авторлар: Tsukanov A.V.1, Kateev I.Y.1
-
Мекемелер:
- NRC “Kurchatov Institute”
- Шығарылым: Том 53, № 6 (2024)
- Беттер: 469-482
- Бөлім: КВАНТОВЫЕ ТЕХНОЛОГИИ
- URL: https://rjonco.com/0544-1269/article/view/681469
- DOI: https://doi.org/10.31857/S0544126924060022
- ID: 681469
Дәйексөз келтіру
Аннотация
Semiconductor charge qubits based on a double quantum dot in an optical microcavity (a photonic crystal defect) are considered taking into account deviations of parameters from preset ones. Influence of topological disorder of a photonic crystal structure on microcavity spectrum and effect of a stochastic field of external charges on the qubit state are analyzed. Ways to attenuate these effects and to optimize the qubit state storage are indicated.
Негізгі сөздер
Толық мәтін

Авторлар туралы
A. Tsukanov
NRC “Kurchatov Institute”
Хат алмасуға жауапты Автор.
Email: tsukanov@ftian.ru
Ресей, Moscow
I. Kateev
NRC “Kurchatov Institute”
Email: ikateyev@mail.ru
Ресей, Moscow
Әдебиет тізімі
- Dietrich C.P., Fiore A., Thompson M.G., Kamp M., Höfling S. GaAs integrated quantum photonics: Towards compact and multi-functional quantum photonic integrated circuits // Las. Photon. Rev. 2016. V. 10. P. 870, https://doi.org/10.1002/lpor.201500321
- Kim J.-H., Aghaeimeibodi S., Carolan J., Englund D., Waks E. Hybrid integration methods for on-chip quantum photonics // Optica. 2020. V. 7. P. 291, https://doi.org/10.1364/OPTICA.384118
- Tsukanov A.V., Kateev I.Yu. Quantum calculations on quantum dots in semiconductor microcavities. Part I // Russian Microelectronics. V. 43. P. 315, https://doi.org/10.1134/S1063739714050060
- Tsukanov A.V., Kateev I.Yu. Quantum calculations on quantum dots in semiconductor microcavities. Part II // Russian Microelectronics. 2014. V. 43. P. 377, https://doi.org/10.1134/S1063739714060092
- Tsukanov A.V., Kateev I.Yu. Quantum calculations on quantum dots in semiconductor microcavities. Part III // Russian Microelectronics. 2015. V. 44. P. 61, https://doi.org/10.1134/S1063739715020079
- Arrazola J.M., Bergholm V., Brádler K., Bromley T.R., Collins M.J., Dhand I., Fumagalli A., Gerrits T., Goussev A., Helt L.G., Hundal J., Isacsson T., Israel R.B., Izaac J., Jahangiri S., Janik R., Killoran N., Kumar S.P., Lavoie J., Lita A.E., Mahler D.H., Menotti M., Morrison B., Nam S.W., Neuhaus L., Qi H.Y., Quesada N., Repingon A., Sabapathy K.K., Schuld M., D. Su, Swinarton J., Száva A., Tan K., Tan P., Vaidya V.D., Vernon Z., Zabaneh Z., Zhang Y. Quantum circuits with many photons on a programmable nanophotonic chip // Nature. 2021. V. 591. P. 54, https://doi.org/10.1038/s41586-021-03202-1
- Strauf S., Rakher M.T., Carmeli I., Hennessy K., Meier C., Badolato A., DeDood M.J.A., Petroff P.M., Hu E.L., Gwinn E.G., Bouwmeester D. Frequency control of photonic crystal membrane resonators by monolayer deposition // Appl. Phys. Lett. 2006. V. 88. P. 043116, https://doi.org/10.1063/1.2164922
- Faraon A., Englund D., Fushman I., Vučković J. Local quantum dot tuning on photonic crystal chips // Appl. Phys. Lett. 2007. V. 90. P. 213110, https://doi.org/10.1063/1.2742789
- Grim J.Q., Bracker A.S., Zalalutdinov M., Carter S.G., Kozen A.C., Kim M., Kim C.S., Mlack J.T., Yakes M., Lee B., Gammon D. Scalable in operando strain tuning in nanophotonic waveguides enabling three-quantum-dot superradiance // Nat. Mater. 2019. V. 18. P. 963, https://doi.org/10.1038/s41563-019-0418-0
- Midolo L., Pagliano F., Hoang T.B., Xia T., van Otten F.W.M., Li L.H., Linfield E.H., Lermer M., Höfling S., Fiore A. Spontaneous emission control of single quantum dots by electromechanical tuning of a photonic crystal cavity // Appl. Phys. Lett. 2012. V. 101. P. 091106, https://doi.org/10.1063/1.4748302
- Petruzzella M., Birindelli S., Pagliano F.M., Pellegrino D., Zobenica Z., Li L.H., Linfield E.H., Fiore A. Quantum photonic integrated circuits based on tunable dots and tunable cavities // APL Photonics. 2018. V. 3. P. 106103, https://doi.org/10.1063/1.5039961
- Kim S., Lee J., Jeon H., Callard S., Seassal C., Song K.-D., Park H.-G. Simultaneous observation of extended and localized modes in compositional disordered photonic crystals // Phys. Rev. A. 2013. V. 88. P. 023804, https://doi.org/10.1103/PhysRevA.88.023804
- Kwan K.C., Tao X.M., Peng G.D. Transition of lasing modes in disordered active photonic crystals // Opt. Lett. 2007. V. 32. P. 2720, https://doi.org/10.1364/OL.32.002720
- Topolancik J., Vollmer F., Ilic B. Random high-Q cavities in disordered photonic crystal waveguides // Appl. Phys. Lett. 2007. V. 91. P. 201102, https://doi.org/10.1063/1.2809614
- Borri P., Langbein W., Woggon U. Exciton dephasing via phonon interactions in InAs quantum dots: Dependence on quantum confinement // Phys. Rev. B. 2005. V. 71. P. 115328, https://doi.org/10.1103/PhysRevB.71.115328
- Johnsson M., Góngora D.R., Martinez-Pastor J.P., Volz T., Seravalli L., Trevisi G., Frigeri P., Muñoz-Matutano G. Ultrafast carrier redistribution in single InAs quantum dots mediated by wetting-layer dynamics // Phys. Rev. Appl. 2019. V. 11. P. 054043, https://doi.org/10.1103/PhysRevApplied.11.054043
- Kammerer C., Voisin C., Cassabois G., Delalande C., Roussignol Ph., Klopf F., Reithmaier J.P., Forchel A., Gérard J.M. Line narrowing in single semiconductor quantum dots: Toward the control of environment effects // Phys. Rev. B. 2002. V. 66. P. 041306(R), https://doi.org/10.1103/PhysRevB.66.041306
- Urbaszek B., McGhee E.J., Krüger M., Warburton R.J., Karrai K., Amand T., Gerardot B.D., Petroff P.M., Garcia J.M. Temperature-dependent linewidth of charged excitons in semiconductor quantum dots: Strongly broadened ground state transitions due to acoustic phonon scattering // Phys. Rev. B. 2004. V. 69. P. 035304, https://doi.org/10.1103/PhysRevB.69.035304
- An C.S., Jang Y.D., Lee H., Lee D., Song J.D., Choi W.J. Delayed emission from InGaAs/GaAs quantum dots grown by migration-enhanced epitaxy due to carrier localization in a wetting layer // J. Appl. Phys. 2013. V. 113. P. 173503, https://doi.org/10.1063/1.4803493
- Florian M., Gartner P., Steinhoff A., Gies C., Jahnke F. Coulomb-assisted cavity feeding in nonresonant optical emission from a quantum dot // Phys. Rev. B. 2014. V. 89. P. 161392(R), https://doi.org/10.1103/PhysRevB.89.161302
- Echeverri-Arteaga S., Vinck-Posada H., Gómez E.A. Explanation of the quantum phenomenon of off-resonant cavity-mode emission // Phys. Rev. A. 2018. V. 97. P. 043815, https://doi.org/10.1103/PhysRevA.97.043815
- Settnes M., Kaer P., Moelbjerg A., Mork J. Auger processes mediating the nonresonant optical emission from a semiconductor quantum dot embedded inside an optical cavity // Phys. Rev. Lett. 2013. V. 111. P. 067403, https://doi.org/10.1103/PhysRevLett.111.067403
- Minkov M., Dharanipathy U.P., Houdré R., Savona V. Statistics of the disorder-induced losses of high-Q photonic crystal cavities // Opt. Expr. 2013. V. 21. P. 28233, https://doi.org/10.1364/OE.21.028233
- Prasad T., Colvin V.L., Mittleman D.M. The effect of structural disorder on guided resonances in photonic crystal slabs studied with terahertz time-domain spectroscopy // Opt. Expr. 2007. V. 15. P. 16955, https://doi.org/10.1364/OE.15.016954
- Guo X.J., Wang Y.F., Jia Y.F., Zheng W.H. Electrically-driven spectrally-broadened random lasing based on disordered photonic crystal structures // Appl. Phys. Let. 2017. V. 111. P. 031113, https://doi.org/10.1063/1.4994325
- Tsukanov A.V., Kateev I.Y. Polarization converter of single photons on a two-dimensional quantum dot in an optical microresonator // Laser Phys. Lett. 2020. V. 17. P. 115204, https://doi.org/10.1088/1612-202X/abbf46
- Fushman I., Waks E., Englund D., Stoltz N., Petroff P., Vučković J. Ultrafast nonlinear optical tuning of photonic crystal cavities // Appl. Phys. Lett. 2007. V. 90. P. 091118, https://doi.org/10.1063/1.2710080
- Tsukanov A.V., Kateev I.Y. Generation of spatially entangled states in a photonic molecule containing a quantum dot // Laser Phys. Lett. 2023. V. 20. P. 116201, https://doi.org/10.1088/1612-202X/acf4ea
- Tsukanov A.V., Kateev I.Yu. Quantum memory node based on a semiconductor double quantum dot in a laser-controlled optical resonator // Quantum Electronics. 2017. V. 47. P. 748, https://doi.org/10.1070/QEL16319
- Tsukanov A.V., Kateev I.Yu. Photonic molecule with mechanical frequency tuning for the optical measurements of a semiconductor charge qubit // Russian Microelectronics. 2021. V. 50. P. 75, https://doi.org/10.1134/S1063739721020098
- Madsen K.H., Kaer P., Kreiner-Møller A., Stobbe S., Nysteen A., Mørk J., Lodahl P. Measuring the effective phonon density of states of a quantum dot in cavity quantum electrodynamics // Phys. Rev. B. 2013. V. 88. P. 045316, https://doi.org/10.1103/PhysRevB.88.045316
- Mickelsen D.L., Carruzzo H.M., Coppersmith S.N., Yu C.C. Effects of temperature fluctuations on charge noise in quantum dot qubits // Phys. Rev. B. 2023. V. 108. P. 075303, https://doi.org/10.1103/PhysRevB.108.075303
- Dalgarno P.A., Smith J.M., McFarlane J., Gerardot B.D., Karrai K., Badolato A., Petroff P.M., Warburton R.J. Coulomb interactions in single charged self-assembled quantum dots: Radiative lifetime and recombination energy // Phys. Rev. B. 2008. V. 77. P. 245311, https://doi.org/10.1103/PhysRevB.77.245311
- Ediger M., Bester G., Gerardot B.D., Badolato A., Petroff P.M., Karrai K., Zunger A., Warburton R.J. Fine structure of negatively and positively charged excitons in semiconductor quantum dots: electron-hole asymmetry // Phys. Rev. Lett. 2007. V. 98. P. 036808, https://doi.org/10.1103/PhysRevLett.98.036808
- Winger M., Volz T., Tarel G., Portolan S., Badolato A., Hennessy K.J., Hu E.L., Beveratos A., Finley J., Savona V., Imamoğlu A. Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot–cavity system // Phys. Rev. Lett. 2009. V. 103. P. 207403, https://doi.org/10.1103/PhysRevLett.103.207403
- Seravalli L., Trevisi G., Mũnoz-Matutano G., Rivas D., Martinez-Pastor J., Frigeri P. Sub-critical InAs layers on metamorphic InGaAs for single quantum dot emission at telecom wavelengths // Cryst. Res. Technol. 2014. V. 49. P. 540, https://doi.org/10.1002/crat.201300395
- Nguyen H.S., Sallen G., Abbarchi M., Ferreira R., Voisin C., Roussignol P., Cassabois G., Diederichs C. Photoneutralization and slow capture of carriers in quantum dots probed by resonant excitation spectroscopy // Phys. Rev. B. 2013. V. 87. P. 115305, https://doi.org/10.1103/PhysRevB.87.115305
- Nguyen H.S., Sallen G., Voisin C., Roussignol Ph., Diederichs C., Cassabois G. Optically gated resonant emission of single quantum dots // Phys. Rev. Lett. 2012. V. 108. P. 057401, https://doi.org/10.1103/PhysRevLett.108.057401
- Huber T., Predojević A., Solomon G.S., Weihs G. Effects of photo-neutralization on the emission properties of quantum dots // Opt .Expr. 2016. V. 24. P. 21794, https://doi.org/10.1364/OE.24.021794
- Seravalli L., Bocchi C., Trevisi G., Frigeri P. Properties of wetting layer states in low density InAs quantum dot nanostructures emitting at 1.3 μm: Effects of InGaAs capping // J. Appl. Phys. 2010. V. 108. P. 114313, https://doi.org/10.1063/1.3518049
- Seravalli L., Trevisi G., Frigeri P., Royce R.J., Mowbray D.J. Energy states and carrier transport processes in metamorphic InAs quantum dots // J. Appl. Phys. 2012. V. 112. P. 034309, https://doi.org/10.1063/1.4744981
- Wuetz B.P., Esposti D.D., Zwerver A.-M.J., Amitonov S.V., Botifoll M., Arbiol J., Sammak A., Vandersypen L.M.K., Russ M., Scappucci G. Reducing charge noise in quantum dots by using thin silicon quantum wells // Nat. Commun. 2023. V. 14. P. 1385, https://doi.org/10.1038/s41467-023-36951-w
- Chauvin N., Zinoni C., Francardi M., Gerardino A., Balet L., Alloing B., Li L.H., Fiore A. Controlling the charge environment of single quantum dots in a photonic-crystal cavity // Phys. Rev. B. 2009. V. 89. P. 241306(R), https://doi.org/10.1103/PhysRevB.80.241306
Қосымша файлдар
