Development of the Ge-MDST instrument structure with an induced p-type channel

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The conditions for the growth of n-type Ge conduction layers by the HW CVD method with the parameters required to create a Ge-TIR transistor with an induced p-type channel are determined. The conditions of deposition by electron beam deposition and subsequent annealing of layers of a high-k dielectric ZrO2:Y2O3 are optimized, allowing to achieve a leakage current of 5 × 10–6 A/cm2. For the developed instrument structure, some parameters of the Ge-TIR transistor were calculated, such as the channel length, the maximum voltage between the drain and the source, and the breakdown voltage.

About the authors

N. A. Alyabina

Nizhegorodsky State University named after N.I. Lobachevsky

Email: asya_titova95@mail.ru
Russian Federation, Nizhny Novgorod

E. A. Arkhipova

Institute of Microstructure Physics of the Russian Academy of Sciences

Email: asya_titova95@mail.ru
Russian Federation, Afonino

Yu. N. Buzynin

Nizhegorodsky State University named after N.I. Lobachevsky; Institute of Microstructure Physics of the Russian Academy of Sciences

Email: asya_titova95@mail.ru
Russian Federation, Nizhny Novgorod; Afonino

S. A. Denisov

Nizhegorodsky State University named after N.I. Lobachevsky

Email: asya_titova95@mail.ru
Russian Federation, Nizhny Novgorod

A. V. Zdoroveishchev

Nizhegorodsky State University named after N.I. Lobachevsky

Email: asya_titova95@mail.ru
Russian Federation, Nizhny Novgorod

A. M. Titova

Nizhegorodsky State University named after N.I. Lobachevsky

Author for correspondence.
Email: asya_titova95@mail.ru
Russian Federation, Nizhny Novgorod

V. Yu. Chalkov

Nizhegorodsky State University named after N.I. Lobachevsky

Email: asya_titova95@mail.ru
Russian Federation, Nizhny Novgorod

V. G. Shengurov

Nizhegorodsky State University named after N.I. Lobachevsky

Email: shengurov@phys.unn.ru
Russian Federation, Nizhny Novgorod

References

  1. Neizvestny I.M. Germanium field-effect transistor (Ge MOSFET) // Bulletin of SibGUTI. 2009. No. 3. Р. 5—9.
  2. Goley P.S., Hudait M.K. Germanium Based Field-Effect Transistor: Challenges and Opportunities. Materials 2014. V.7. P. 2301—2339. doi: 10.3390/ma7032301.
  3. Yi S.H., Chang-Liao K.S., Wu T.Y., Hsu C.W., Huang J. High performance Ge pMOSFETs with HfO2/Hf-Cap/GeOx gate stack and suitable post metal annealing treatments // IEEE Trans Electron Devices. 2017. V. 37. No. 7. P. 544—547. doi: 10.1109/LED.2017.2686400.
  4. Liu H., Han G., Liu Y., Hao Y. High Mobility Ge pMOSFETs with ZrO2 Dielectric: Impacts of Post Annealing Nanoscale Research Letters 2019. V. 14. P. 202. DOI: 10.1186 / s11671-019-3037-4.
  5. Shin Y., Chung W., Seo Y., Lee C.H., Sohn D.K., Cho B.J. Demonstration of Ge pMOSFETs with 6 Å EOT using TaN/ZrO2/Zr-cap/n-Ge(100) gate stack fabricated by novel vacuum annealing and in-situ metal capping method // IEEE Symposium on VLSI Technology. 2014. P. 82—83. doi: 10.1109/VLSIT.2014.6894377.
  6. Lin C.M., Chang H.C., Chen Y.T., Wong I.H., Lan H.S., Luo S.J., Lin J.Y., Tseng Y.J., Liu C.W., Hu C., Yang F.L. Interfacial layer-free ZrO2 on Ge with 0.39-nm EOT, κ ~ 43, ~2 × 10–3 A/cm2 gate leakage, SS = 85 mV/dec, Ion/Ioff = 6 × 105, and high strain response. Electron Devices Meeting (IEDM) // 2012 IEEE International. 2012. P. 23.2.1—23.2.4.
  7. Henkel C., Abermann S., Bethge O., Pozzovivo G., Klang P., Reiche M., Bertagnolli E. Ge p-MOSFETs with scaled ALD La2O3/ZrO2 gate dielectrics // IEEE Trans Electron Devices. 2010. V.57. P. 3295—3302. doi: 10.1109/TED.2010.2081366.
  8. Seo Y., Lee T.I., Yoon C.M., Park B.E., Hwang W.S., Kim H. The impact of an ultrathin Y2O3 layer on GeO2 passivation in Ge MOS gate stacks // IEEE Trans Electron Devices. 2017. V. 64. P. 3303—3307.
  9. Kamata Y. High-k/Ge MOSFETs for Future Nanoelectronics // Materials today. 2008. V. 11. Nos. 1-2. P. 31—38. doi: 10.1016/S1369-7021 (07)70350-4.
  10. Wu N., Zhang Q., Chan D.S.H., Balasubramanian N., Zhu C. Gate-First germanium nMOSFET with CVD HfO2 gate dielectric and silicon surface passivation // IEEE Electron Device Letters. 2006. V. 27. No. 6. P. 479—491. doi: 10.1109/LED.2006.874209.
  11. Kamata Y. High-k/Ge MOSFETs for future nanoelectronics // Materials today. 2008. V. 11. No. 1. P. 30—38. doi: 10.1016/S1369-7021 (07)70350-4.
  12. Buzynin A.N., Osiko V.V., Buzynin Y.N. Fianite: a multipurpose electronics material // Bulletin of the Russian Academy of Sciences: Physics. 2010. V. 74. No. 7. P. 1027—1033. doi: 10.3103/S1062873810070300.
  13. Buzynin A.N., Buzynin Y.N., Panov V.A. Applications of Fianite in Electronics. Advances in OptoElectronics V. 2012. P. 23. doi: 10.1155/2012/907560.
  14. Buzynin Y., Shengurov V., Zvonkov B., Buzynin A., Denisov S., Baidus N., Drozdov M., Pavlov D., Yunin P. GaAs/Ge/Si Epitaxial Substrates: Development and Characteristics. Green and Sustainable Chemistry. 2017. V. 7. No. 1. P. 015304. doi: 10.1063/1.4974498.
  15. Titova A.M., Denisov S.A., Chalkov V.Yu., Alyabina N.A., Zdoroveishchev A.V., Shengurov V.G. Distribution of charge carrier concentrations in epitaxial layers of Ge and GeSn grown on n+-Si(001) substrates // Physics and Technology of semiconductors. 2022. V. 56. No. 9. Р. 339—343. doi: 10.21883/FTP.2022.09.53401.36.
  16. Bean J.C., Leamy H.J., Poate J.M., Rozgonyi G.A., Sheng T.T., Williams J.S., Celler G.K. Epitaxial laser crystallization of thin‐film amorphous silicon // Applied Physics Letters. 1978. V. 33. P. 227—230. doi: 10.1063/1.90324.
  17. Nikiforov A.I., Kanter B.Z., Stenin S.I. Obtaining multilayer silicon structures by molecular beam epitaxy // Electronic Industry. 1989. No. 6. Р. 3—5.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences