Modeling of Self-Assembly of Microinductors Produced Due to Residual Mechanical Stress
- Autores: Babushkin A.S.1, Selyukov R.V.1
-
Afiliações:
- NRC “Kurchatov institute” – Valiev IPT, Yaroslavl Branch
- Edição: Volume 54, Nº 4 (2025)
- Páginas: 291-300
- Seção: MODELING
- URL: https://rjonco.com/0544-1269/article/view/690994
- DOI: https://doi.org/10.31857/S0544126925040032
- EDN: https://elibrary.ru/qgolvt
- ID: 690994
Citar
Texto integral



Resumo
The finite element method was used to simulate four designs of three-dimensional microinductors, the production of which is carried out by self-assembly using residual mechanical stress. During the simulation the deformation of blanks made of a 300 nm thick Cr film was calculated in the specified areas of which a gradient of mechanical stress was formed. The finite element method was also used to determine the inductance of the obtained microinductors.
Palavras-chave
Sobre autores
A. Babushkin
NRC “Kurchatov institute” – Valiev IPT, Yaroslavl Branch
Autor responsável pela correspondência
Email: artem.yf-ftian@mail.ru
Yaroslavl, Russia
R. Selyukov
NRC “Kurchatov institute” – Valiev IPT, Yaroslavl Branch
Email: rvselyukov@mail.ru
Yaroslavl, Russia
Bibliografia
- Varadan V.K., Vinoy K.J., Jose K.A. RF MEMS and their applications. – John Wiley & Sons, 2003. ISBN: 0-470-84308-X
- Hikmat O.F., Ali M.S.M. RF MEMS inductors and their applications — A review // Journal of Microelectromechanical systems. 2016. V. 26. P. 17—44. https://doi.org/10.1109/JMEMS.2016.2627039
- Shetty C. A detailed study of Qdc of 3D micro air-core inductors for integrated power supplies: Power supply in package (PSiP) and power supply on chip (PSoC) // Power Electronic Devices and Components. 2022. V. 2. P. 100006. https://doi.org/10.1016/j.pedc.2022.100006
- Lou J., Ren H, Chao X., Chen K., Bai H., Wang Z. Recent progress in the preparation technologies for micro metal coils // Micromachines. 2022. V. 13. № 6. P. 872. https://doi.org/10.3390/mi13060872
- Fang D.M., Wang X.N., Zhou Y., Zhao X.L. Fabrication and performance of a micromachined 3-D solenoid inductor // Microelectronics journal. 2006. V. 37. № 9. P. 948–951. https://doi.org/10.1016/j.mejo.2006.01.009
- Fang D.M., Zhou Y., Wang X.N., Zhao X.L. Surface micromachined high-performance RF MEMS inductors // Microsystem technologies. 2007. V. 13. P. 79–83. https://doi.org/10.1007/s00542-006-0262-4
- Xu T., Sun J., Wu H., Li H., Li H., Tao Z. 3D MEMS in-chip solenoid inductor with high inductance density for power MEMS device // IEEE Electron Device Letters. 2019. V. 40. №. 11. P. 1816–1819. https://doi.org/10.1109/LED.2019.2941003
- Le H.T., Haque R.I., Ouyang Z., Lee S.W., Fried S.I., Zhao D., Qiu M., Han A. MEMS inductor fabrication and emerging applications in power electronics and neurotechnologies // Microsyst Nanoeng. V. 7. P. 59. 2021. https://doi.org/10.1038/s41378-021-00275-w
- Woytasik M., Grandchamp J.P., Dufour-Gergam E., Gilles J.P., Megherbi S., Martincic E. Two-and three-dimensional microcoil fabrication process for three-axis magnetic sensors on flexible substrates // Sensors and Actuators A: Physical. 2006. Т. 132. № 1. С. 2–7. https://doi.org/10.1016/j.sna.2006.06.062
- Chua C.L. Fork D.K., Schuylenbergh K. Van, Lu J.P. Out-of-plane high-Q inductors on low-resistance silicon // Journal of Microelectromechanical Systems. 2003. V. 12. № 6. P. 989–995. https://doi.org/10.1109/JMEMS.2003.820274
- Weon D.H., Jeon J.H., Mohammadi S. High-Q micromachined three-dimensional integrated inductors for high-frequency applications // Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena. 2007. V. 25. № 1. P. 264–270. https://doi.org/10.1116/1.2433984
- Uchiyama S., Yang Z.Q., Toda A., Hayase M., Takagi H., Itoh T., Maeda R., Zhang Y. Novel MEMS-based fabrication technology of micro solenoid-type inductor // Journal of Micromechanics and Microengineering. 2013. V. 23. № 11. P. 114009. https://doi.org/10.1088/0960-1317/23/11/114009
- Yang C., Wu S.Y., Glick C., Choi Y.S., Hsu W., Lin L. 3D printed RF passive components by liquid metal filling // 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2015. P. 261–264. https://doi.org/10.1109/MEMSYS.2015.7050938
- Dechev N., Mills J.K., Cleghorn W.L. Mechanical fastener designs for use in the microassembly of 3d microstructures // ASME International Mechanical Engineering Congress and Exposition. – 2004. – V. 47144. – P. 447–456. https://doi.org/10.1115/IMECE2004-62212
- Bo R., Xu S., Yang Y., Zhang Y. Mechanically-guided 3D assembly for architected flexible electronics // Chemical Reviews. 2023. V. 123. № 18. P. 11137–11189. https://doi.org/10.1021/acs.chemrev.3c00335
- Zhang Z., Tian Z., Mei Y., Di Z. Shaping and structuring 2D materials via kirigami and origami // Materials Science and Engineering: R: Reports. 2021. V. 145. P. 100621. https://doi.org/10.1016/j.mser.2021.100621
- Karnaushenko D., Kang T., Bandari V.K., Zhu F., Schmidt O.G. 3D self-assembled microelectronic devices: concepts, materials, applications // Advanced Materials. 2020. V. 32. P. 1902994. https://doi.org/10.1002/adma.201902994
- Liu Z., Du H., Li Z.Y., Fang N.X., Li J. Invited Article: Nano-kirigami metasurfaces by focused-ion-beam induced close-loop transformation // Apl Photonics. 2018. V. 3. № 10. https://doi.org/10.1063/1.5043065
- Mao Y., Zheng Y., Li C., Guo L., Pan Y., Zhu R., Xu J., Zhang W., Wu W. Programmable bidirectional folding of metallic thin films for 3D chiral optical antennas // Advanced materials. 2017. V. 29. №. 19. P. 1606482. https://doi.org/10.1002/adma.201606482
- Babushkin A.S., Uvarov I.V., Amirov I.I. Effect of low-energy ion-plasma treatment on residual stresses in thin chromium films // Technical Physics. – 2018. V. 63. P. 1800–1807. https://doi.org/10.1134/S1063784218120228
- Babushkin A., Selyukov R., Amirov I. Effect of Ar ion-plasma treatment on residual stress in thin Cr films // Proc. of SPIE, 2019. V. 11022. P. 1102223–1. https://doi.org/10.1117/12.2521617
- Zienkiewicz O.C., Morgan K. Finite elements and approximation. – Courier Corporation, 2006. ISBN: 0-486-45301-4
Arquivos suplementares
