Тепловое моделирование и оптимизация топологии GaN интегральной схемы полумоста с драйвером управления и силовыми транзисторами

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В работе представлены результаты теплового моделирования кристалла монолитной интегральной схемы (ИС) полумоста с драйвером управления и нормально закрытыми силовыми транзисторами с высокой подвижностью электронов, выполненного на гетероструктуре нитрид галлия — кремний-на-диэлектрике (GaN-on-Si-on-Insulator, GaN-on-SOI). Показано, что основным источником тепла в ИС являются выходные силовые GaN транзисторы, тепло от которых, распространяясь по объему кристалла, приводит к нагреву логического блока ИС, а также увеличению температуры блока драйверов. Нагрев силовых транзисторов приводит к росту сопротивления их канала, что ведет к падению выходного тока ИС. Нагрев блока драйверов уменьшает ток его транзисторов и, как следствие, увеличивает время переключения выходных силовых GaN транзисторов. Нагрев логического блока ИС приводит к росту длительности фронтов формируемых сигналов управления, что ухудшает динамические характеристики ИС. Сравнительный анализ распространения тепла для кристаллов ИС на основе гетероструктур GaN-on-SOI и GaN-on-Si показал, что в направлении к обратной стороне кристалла структура GaN-on-SOI имеет удельное тепловое сопротивление примерно на 40% большее, чем структура GaN-on-Si. При этом удельное тепловое сопротивление в направлении распространения тепла от горячей зоны транзистора к обратной стороне кристалла у структуры GaN-on-SOI почти на два порядка величины больше, чем в направлении его распространения к лицевой стороне кристалла. Полученные результаты были использованы для оптимизации топологии расположения функциональных блоков GaN-on-SOI ИС, а также для введения дополнительных топологических элементов, способствующих распределению и отводу тепла с лицевой поверхности кристалла.

Об авторах

В. А. Кагадей

АО “НПП Радар ммс”; Национальный исследовательский Томский государственный университет

Email: irina_tusur@mail.ru
Россия, Санкт-Петербург; Томск

И. Ю. Кодорова

АО “НПП Радар ммс”; Национальный исследовательский Томский государственный университет

Автор, ответственный за переписку.
Email: irina_tusur@mail.ru
Россия, Санкт-Петербург; Томск

Е. С. Полынцев

АО “НПП Радар ммс”; Национальный исследовательский Томский государственный университет

Email: irina_tusur@mail.ru
Россия, Санкт-Петербург; Томск

Список литературы

  1. Fichtenbaum N., Giandalia M., Sharma S., and Zhang J. Half-bridge GaN power ICs: Performance and application // IEEE Power Electronics Magazine. 2017. V. 4. Р. 33—40.
  2. Roccaforte F., Fiorenza P., Greco G., Nigro R.L., Giannazzo F., Patti A., and Saggio M. Challenges for energy efficient wide band gap semiconductor power devices // Physical status solidi. 2014. V. 211. Р. 2063—2071.
  3. Flack T.J., Pushpakaran B.N., and Bayne S.B. GaN technology for power electronic applications: a review // Journal of Electronic Materials. 2016. V. 45. Р. 2673—2682.
  4. Li X., Van Hove M., Zhao M., Geens K. et al. 200 V enhancement-mode p-GaN HEMTs fabricated on 200 mm GaN-on-SOI with trench isolation for monolithic integration // IEEE Electron Device Letters. 2017. V. 38. Р. 918—921.
  5. Chen H.Y., Kao Y.Y., Zhang Z.Q. et al. A fully integrated GaN-on-silicon gate driver and GaN switch with temperature-compensated fast turn-on technique for improving reliability // 2021 IEEE International Solid-State Circuits Conference (ISSCC). 2021. V. 64. Р. 460—462.
  6. Integrated Smart GaNs. Дата обращения: 05.05.2023. https://www.st.com/en/power-management/integrated-smart-gans.html
  7. Jiang Q., Tang Z., Zhou C., Yang S., and Chen K.J. Substrate-coupled cross-talk effects on an AlGaN/GaN-on-Si smart power IC platform // IEEE Transactions on Electron Devices. 2014. V. 61. Р. 3808—3813.
  8. Jones E.A., de Rooij M. High-power-density GaN-based converters: Thermal management considerations // IEEE Power Electronics Magazine. 2019. V. 6. Р. 22—29.
  9. Chvála A., Szobolovszky R., Kovac J. et al. Advanced characterization techniques and analysis of thermal properties of AlGaN/GaN multifinger power HEMTs on SiC substrate supported by three-dimensional simulation // Journal of Electronic Packaging. 2019. V. 141. Р. 031007-7.
  10. Moench S., Reiner R., Waltereit P. et al. A 600 V gan-on-si power ic with integrated gate driver, freewheeling diode, temperature and current sensors and auxiliary devices // CIPS 2020 11th International Conference on Integrated Power Electronics Systems. 2020. Р. 1—6.
  11. Ma K., Ma K. Electro-thermal model of power semiconductors dedicated for both case and junction temperature estimation // Power electronics for the next generation wind turbine system. 2015. Р. 139—143.
  12. Попескул А.Н. Теплотехника: методическое пособие, Тирасполь, 2016. 132 с.
  13. Aygün D., Fossion M., Decoutere S. et al. A Monolithic 200 V GaN Half Bridge IC with Integrated Gate Drivers and Level-shifters Achieving 98.3% Peak Efficiency // 2022 IEEE Applied Power Electronics Conference and Exposition (APEC). 2022. Р. 2141—2145.
  14. Magnani A., Cosnier T., Amirifar N. et al. Thermal characterization of GaN lateral power HEMTs on Si, SOI, and poly-AlN substrates // Microelectronics Reliability. 2021. V. 118. Р. 114061—114068. doi: 10.1016/j.microrel.2021.114061.
  15. Magnani A., Cosnier T., Amirifar N. et al. Thermal resistance characterization of GaN power HEMTs on Si, SOI, and poly-AlN substrates // 21st International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE). 2020. Р. 1—6. doi: 10.1109/EuroSimE48426.2020.9152656.
  16. Бартенев А.И., Кагадей В.А., Коряковцев А.С., Полынцев Е.С., Помазанов А.В., Проказина И.Ю., Шеерман Ф.И. Силовая GaN-электроника как фактор роста энергоэффективности преобразователей электрической энергии // Технологии безопасности жизнедеятельности. 2023. С. 91—100.
  17. Polyntsev E.S., Prokazina I.Y., Bartenev A.I., Sogomonyants A.A., and Kagadey V.A. Development of Half-bridge IC with On-chip Drivers and Power e-HEMT Based on GaN-on-SOI Platform // 2022 International Siberian Conference on Control and Communications (SIBCON). 2022. Р. 1—4.
  18. Li X., Van Hove M., Zhao М. et al. Suppression of the backgating effect of enhancement-mode p-GaN HEMTs on 200 mm GaN-on-SOI for monolithic integration // IEEE electron device letters. 2018. V. 39. Р. 999—1002.
  19. Milanizadeh M., Aguiar D., Melloni A., and Morichetti F. Canceling thermal cross-talk effects in photonic integrated circuits // Journal of Lightwave Technology. 2019. V. 37. Р. 1325—1332.
  20. Wong K.Y., Chen W., Chen K.J. Integrated voltage reference and comparator circuits for GaN smart power chip technology // 21st International Symposium on Power Semiconductor Devices & IC’s. 2009. Р. 57—60.
  21. Бессонов Л.А. Теоретические основы электротехники. Электрические цепи. М.: ЮРАЙТ. 2002. 638 с.
  22. Górecki K., Zarębski J., Górecki P., and Ptak P. Compact thermal models of semiconductor devices: A Review. International Journal of Electronics and Telecommunications. 2019. V. 65. Р. 151—158.
  23. Chiu H.C., Peng L.Y., Yang C.W. et al. Analysis of the back-gate effect in normally OFF p-GaN gate high-electron mobility transistor // IEEE Transactions on Electron Devices. 2014. V. 62. Р. 507—511.
  24. Mocanu M., Unger C., Pfost M., Waltereit P., and Reiner R. Thermal stability and failure mechanism of Schottky gate AlGaN/GaN HEMTs // IEEE Transactions on Electron Devices. 2017. V. 64. Р. 848—855.
  25. Abdullah M.F., Hussin M.R.M., Ismail M.A., & Sabli S.K.W. Chip-level thermal management in GaN HEMT: Critical review on recent patents and inventions // Microelectronic Engineering. 2023. Р. 111958—111967.
  26. Li X. Reliability and Integration of GaN Power Devices and Circuits on GaN-on-SOI, 2020.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024