Временные изменения механизмов токопрохождения в легированном эрбием пористом кремнии

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В работе рассматриваются основные механизмы проводимости в кремниевых МДП-структурах. Объектом исследования выступает пористый кремний, легированный эрбиевой примесью водного раствора азотнокислого эрбия Er(NO3)3 • 5H2O методом температурного отжига в диффузионной печи при температуре 800°С в течение 1 ч. Представлены сравнительные характеристики вольт-амперных и вольт-фарадных зависимостей, описывающих закономерные изменения механизмов токопрохождения и захвата заряда в исследуемых образцах. Результаты работы качественно и количественно описывают временное изменение электрических характеристик пористого кремния, которые могут быть приняты во внимание технологами при понимании механизмов токопереноса в люминесцентных структурах пористого кремния с ионами эрбия, а также исследовании и изготовлении светоизлучательных диодов на его основе.

Полный текст

Доступ закрыт

Об авторах

Э. Х. Хамзин

Самарский национальный исследовательский университет им. академика С. П. Королева

Автор, ответственный за переписку.
Email: elkhan.k.khamzin@gmail.com
Россия, Самара

Д. А. Услин

Самарский национальный исследовательский университет им. академика С. П. Королева

Email: elkhan.k.khamzin@gmail.com
Россия, Самара

Список литературы

  1. Lenshin A.C. Formation and functional properties of nanostructures based on porous silicon // Dissertation for the degree of Doctor of Physical and Mathematical Sciences 01.04.10 — Physics of semiconductors. Voronezh, 2020.
  2. Canham L. Routes of Formation for Porous Silicon. Handbook of Porous Silicon. 2014. P. 3–4.
  3. Latukhina N.V., Nechaev N.A., Khramkov V.A., Volkov A.V., Agafonov A.N. Structures with macroporous silicon for photo-converters on silicon substrate // Thin Films in Optics and Nanoelectronics. Proc. of 18 International Symposium. Kharkov. 2006. V. 2. С. 207–211.
  4. Kimura T., Yokoi A., Horiguchi H., Saito R. Electrochemical Er doping of porous silicon and its room temperature luminescence at ~1.54 gm // Appl. Phys. Lett. 1994. No. 65. P. 983–985.
  5. Penczek J., Chao I-Wen, Smith R.L., Knoesen A., Davis J.E. and Lee H.W. H. Visible to near-infrared emission from a porous silicon device // Proceedings of LEOS.94. Boston, MA, USA. 1994. V. 2. P. 13–14. doi: 10.1109/LEOS.1994.586286.
  6. Vercauteren R., Scheen G., Raskin J.-P., Francis L.A. Porous silicon membranes and their applications: Recent advances, Sensors and Actuators A: Physical. 2021. V. 318. Р. 112486. ISSN0924-4247. https://doi.org/10.1016/j.sna.2020.112486
  7. Johnson C.M., Reece P.J., Conibeer G.J. Theoretical and experimental evaluation of multilayer porous silicon structures for enhanced erbium up-conversion luminescence. Optics (physics.optics), 2012. doi: 10.48550/arXiv.1208.6046.
  8. Karoui А., Kechiantz А. Sensitization of Porous Silicon with Germanium Quantum Dots for Up-Conversion of Low Energy Photons via Intermediate Band for Third Generation Solar Cells // ECS Transactions, IOP science. 2011. V. 41. Nо. 4. doi: 10.1149/1.3628609.
  9. Toledo R.P., Huanca D.R., Oliveira A.F., dos Santos Filho S.G., Salcedo W. J. Electrical and optical characterizations of erbium doped MPS/PANI heterojunctions // Applied Surface Science. 2020. V. 529. doi: 10.1016/j.apsusc.2020.146994.
  10. Karzanova M.V. Luminescence of porous silicon with rare-earth element admixtures Dissertation for the degree of Candidate of Physical and Mathematical Sciences in the field of 01.04.10 — physics of semiconductors Nizhny Novgorod, 2013.
  11. Bondarenko V.P. et al. Luminescence of erbium-doped porous silicon // Tech. Phys. Lett. 23. 1997. Р. 3–4.
  12. Kashkarov P.K. et al. Effective luminescence of erbium ions in silicon systems nanocrystals // OTT. 2004. T. 46. B. 1. Р. 105–109.
  13. Yong-Gang Frank Ren. Erbium Doped Silicon as an Optoelectronic Semiconductor // Material Dissertation for the doctorate degree of Department of Materials Science and Engineering in the filed of “Electronic Materials”. Boston: Massachusetts, 1994.
  14. Chyuan-Haur Kao, Hsiang Chen, Yu Tsung Pan, Jing Sing Chiu, Tien-Chang Lu. The characteristics of the high-K Er2O3 (erbium oxide) dielectrics deposited on polycrystalline silicon, Solid State Communications. 2012. V. 152. Iss. 6. P. 504–508. doi: 10.1016/j.ssc. 2011.12.042.
  15. Wu Deqi, Yao Jincheng, Zhao Hongsheng, Chang Aimin1 and Li Feng. Leakage current mechanisms of ultrathin high-k Er2O3 gate dielectric film // IOP science Journal of Semiconductors. V. 30. Nо. 10. doi: 10.1088/1674-4926/30/10/103003.
  16. Acha C. Graphical analysis of current-voltage characteristics in memristive interfaces // Journal of Applied Physics. 2017. V. 121. No. 13. Р. 134502. doi: 10.1063/1.4979723.
  17. Шалимова М. Б., Сачук Н. В. Анализ электрофизических характеристик бистабильных МДП-структур с фторидами самария и церия // Физика волновых процессов и радиотехнические системы. 2020. Т. 23. № 1. С. 58–66. doi: 10.18469/1810-3189.2020.23.1.58-66.
  18. Fu-Chien Chiu. A Review on Conduction Mechanisms in Dielectric Films // Advances in Materials Science and Engineering. 2014. Article ID578168. 18 p. https://doi.org/10.1155/2014/578168

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Зависимость механизмов проводимости показателя γ от U1/2 и ВАХ для образцов: a — № 1; б — № 2; в — № 3; г — № 6; д — № 10.

3. Рис. 2. ВФХ образцов: a — № 1; б — № 2; в — № 3; г — № 6; д — № 10.

Скачать (202KB)

© Российская академия наук, 2024