Genetic determinants of hepatocellular carcinoma: the role of PNPLA3, FABP2, FADS1/FADS2 genes in yakuts



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Hepatocellular carcinoma is an aggressive primary liver cancer, the development factors of which are liver cirrhosis, hepatitis B and C infections, non-alcoholic fatty liver disease (NAFLD) and, in particular, type 2 diabetes mellitus (T2DM). According to the state medical statistics of the Russian Federation for 2021, the highest incidence of malignant neoplasms of the liver and intrahepatic bile ducts was in the Sakha Republic (Yakutia), which is possibly due to a change in eating habits that led to an increase in the number of people with obesity, T2DM and NAFLD.

AIM: To study the variability of the PNPLA3, FABP2, FADS1 and FADS2 genes involved in lipid metabolism and associated with non-alcoholic fatty liver disease, a risk factor for hepatocellular carcinoma in the Yakut population.

METHODS: A total of 498 volunteers participated in the study, of which 126 were diagnosed with NAFLD with concomitant type 2 diabetes. Single nucleotide polymorphisms were determined by polymerase chain reaction (PCR) followed by restriction fragment length polymorphism (RFLP) analysis.

RESULTS: The studied polymorphisms of the PNPLA3, FADS1 and FADS2 genes showed a predominance of alleles pathological in relation to NAFLD in both groups of subjects. With regard to the rs1799883 polymorphism of the FABP2 gene, a reliable (p=0.02) association of the Ala allele with NAFLD with concomitant type 2 diabetes was revealed. When compared with other populations from the 1000 Genomes project database, a high frequency of alleles of the studied polymorphisms pathological in relation to NAFLD was established in the Yakut population.

CONCLUSION: The high prevalence of PNPLA3, FABP2, FADS1 and FADS2 gene variants associated with increased BMI and NAFLD is probably related to an adaptive mechanism for fat accumulation in the liver. With the change in lipid-protein diet to a predominantly carbohydrate diet, previously favorable allelic variants of these genes now lead to metabolic disorders, which affects the incidence of liver pathologies, including hepatocellular carcinoma.

Full Text

Restricted Access

About the authors

Nadezhda I. Pavlova

Yakut Science Center of Complex Medical Problems, Yakutsk, Russia

Email: solnishko_84@inbox.ru
ORCID iD: 0000-0001-7862-1876
SPIN-code: 6167-5254

Cand. Sci. (Biology)

Russian Federation, Yakutsk, Russia

Alexey V. Krylov

Yakut Science Center of Complex Medical Problems, Yakutsk, Russia

Email: alexkrulovwork@gmail.com
ORCID iD: 0009-0005-5977-5518
SPIN-code: 5746-3015

Resercher Assistant

Russian Federation, Yakutsk, Russia

Alexey A. Bochurov

Yakut Science Center of Complex Medical Problems, Yakutsk, Russia

Email: binbaher@mail.ru
ORCID iD: 0009-0008-5414-4102
SPIN-code: 1853-0018

Resercher Assistant

Russian Federation, Yakutsk, Russia

Ivan P. Troev

Ammosov North-Eastern Federal University, Yakutsk, Russia

Email: ysumed@yandex.ru
ORCID iD: 0000-0001-9782-8565
SPIN-code: 3750-7480

Senior Researcher

Russian Federation, Yakutsk, Russia

Khariton A. Kurtanov

Republican Clinical Hospital No. 3, Yakutsk, Russia

Author for correspondence.
Email: Sydlub@mail.ru
ORCID iD: 0000-0002-2841-0357
SPIN-code: 8254-3787

MD, Cand. Sci. (Medicine)

Russian Federation, Yakutsk, Russia

References

  1. Sleptsova SS, Sleptsov SS, Semenova VK. Comparative evaluation of various strategies medical care for chronic hepatitis С in the Republic of Sakha (Yakutia). HIV Infection and Immunosuppressive Disorders. 2021;13(1):88–96. doi: 10.22328/2077-9828-2021-13-1-88-96 EDN: XYDYEK
  2. Biryukova EV, Rodionova SV. Type 2 Diabetes Mellitus and Non-Alcoholic Fatty Liver Disease — Diseases of the Present. Medical Almanac. 2017;51(6):130–135. (In Russ.)
  3. Le MH, Le DM, Baez TC, et al. Global incidence of non-alcoholic fatty liver disease: A systematic review and meta-analysis of 63 studies and 1,201,807 persons. Journal of Hepatology. 2023;79(2):287–295. doi: 10.1016/j.jhep.2023.03.040
  4. Wong VW, Ekstedt M, Wong GL, Hagström H. Changing epidemiology, global trends and implications for outcomes of NAFLD. Journal of Hepatology. 2023;79(3):842–852. doi: 10.1016/j.jhep.2023.04.036
  5. Ivashkin VT, Drapkina OM, Mayev IV, et al. Prevalence of non-alcoholic fatty liver disease in out-patients of the Russian Federation: DIREG 2 study results. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2015;25(6):31–41. EDN: VOXFQP
  6. Tyaptirgyanova TM. Pecularities of clinical course of chronic hepatopathy in the Far North. Vestnik Severo-Vostochnogo federal'nogo universiteta im. M.K. Ammosova. 2006;3(4):32–37. EDN: JWTJGT
  7. Kaprinа AD, Starinsky VV, Shakhzadova AO. Malignant Neoplasms in Russia in 2021 (Incidence and Mortality). Moscow: P.A. Herzen Moscow Research Institute of Oncology, Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation; 2022. (In Russ.)
  8. Liu C, Liu T, Zhang Q, et al. New-Onset Age of Nonalcoholic Fatty Liver Disease and Cancer Risk. JAMA Netw Open. 2023;6(9):e2335511. doi: 10.1001/jamanetworkopen.2023.35511
  9. Vetrano E, Rinaldi L, Mormone A, et al. Non-alcoholic Fatty Liver Disease (NAFLD), Type 2 Diabetes, and Non-viral Hepatocarcinoma: Pathophysiological Mechanisms and New Therapeutic Strategies. Biomedicines. 2023;11(2):468. doi: 10.3390/biomedicines11020468
  10. Berezhnaya IV, Zakharova IN, Simakova MA, Sgibneva AI. Polyunsaturated fatty acids: omega-3 and omega-6 and nonalcoholic fatty liver disease. Pediatrics. Consilium Medicum. 2021;(4):335–340. doi: 10.26442/26586630.2021.4.201348 EDN: TJCFBG
  11. Nobili V, Alisi A, Liu Z, et al. In a pilot study, reduced fatty acid desaturase 1 function was associated with nonalcoholic fatty liver disease and response to treatment in children. Pediatric research. 2018;5(84):696–703. doi: 10.1038/s41390-018-0132-7
  12. Sharma D, Mandal P. NAFLD: genetics and its clinical implications. Clinics and Research in Hepatology and Gastroenterology. 2022;46(9):102003. doi: 10.1016/j.clinre.2022.102003
  13. Hancock AM, Witonsky DB, Alkorta-Aranburu G, et al. Adaptations to climate-mediated selective pressures in humans. PLoS Genetic. 2011;7(4):e1001375. doi: 10.1371/journal.pgen.1001375
  14. Senftleber N, Jørgensen ME, Jørsboe E, et al. Genetic study of the Arctic CPT1A variant suggests that its effect on fatty acid levels is modulated by traditional Inuit diet. Eur J Hum Genet. 2020;28(11):1592–1601. doi: 10.1038/s41431-020-0674-0
  15. Bolognini D, Halgren A, Lou RN, et al. Global diversity, recurrent evolution, and recent selection on amylase structural haplotypes in humans. bioRxiv [Preprint]. 2024 Jun 13:2024.02.07.579378. doi: 10.1101/2024.02.07.579378
  16. Fumagalli M, Moltke I, Grarup N, et al. Greenlandic Inuit show genetic signatures of diet and climate adaptation. Science. 2015;349(6254):1343–1347. doi: 10.1126/science.aab2319
  17. Panin LE. Homeostasis and problems of circumpolar health (methodological aspects of adaptation). Byulleten' SO RAMN. 2010;30(3):6–11. EDN: MSSFQP
  18. Sookoian S, Pirola CJ. Genetic predisposition in nonalcoholic fatty liver disease. Clinical and Molecular Hepatology. 2017;23(1):1–12. doi: 10.3350/cmh.2016.0109
  19. Donati B, Motta BM, Pingitore P. The rs2294918 E434K variant modulates patatin-like phospholipase domain-containing 3 expression and liver damage. Hepatology. 2016;63(3):787–798. doi: 10.1002/hep.28370
  20. Pavlova NI, Krylov AV, Bochurov AA. High Frequency of Ancestral Haplotype A of Fatty Acid Desaturase Genes in the Yakut Population. Genetic Testing and Molecular Biomarkers. 2024;28(6). doi: 10.1089/gtmb.2024.0085 EDN: KOEPXD
  21. Dyakonova AT, Kurtanov KA, Pavlova NI, et al. Polymorphism rs58542926 of the TM6SF2 gene in chronic non-infectious liver diseases in the yakut population. Sovremennye problemy nauki i obrazovaniya. 2019;(6):133. doi: 10.17513/spno.29334 EDN: TCKVGK
  22. Kozlitina J, Smagris E, Stender S, et al. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nature genetics. 2014;46(4):352–356. doi: 10.1038/ng.2901
  23. Ameur A, Enroth S, Johansson A, et al. Genetic adaptation of fatty-acid metabolism: a human-specific haplotype increasing the biosynthesis of long-chain omega-3 and omega-6 fatty acids. American journal of human genetics. 2012;90(5):809–820. doi: 10.1016/j.ajhg.2012.03.014
  24. Borodina SV, Gapparova KM, Zainudiniv ZM, Grigorian ON. Genetic predictors of obesity development. Obesity and metabolism. 2016;13(2):7–13. doi: 10.14341/omet201627-13 EDN: WWJOMZ
  25. Dosso B, Waits CMK, Simms KN, et al. Impact of rs174537 on Critically Ill Patients with Acute Lung Injury: A Secondary Analysis of the OMEGA Randomized Clinical Trial. Current developments in nutrition. 2020;10(4):nzaa147. doi: 10.1093/cdn/nzaa147
  26. Pavlova NI, Bochurov AA, Alekseev VA, et al. The variability of PNPLA3 gene as a potential marker of cold adaptation in Yakuts. International Journal of Circumpolar Health. 2023;(1):2246647. doi: 10.1080/22423982.2023.2246647
  27. Feldstein AE, Werneburg NW, Canbay A, et al. Free fatty acids promote hepatic lipotoxicity by stimulating TNF-α expression via a lysosomal pathway. Hepatology. 2004;40(1):185–194. doi: 10.1002/hep.20283
  28. de Luis D, Aller R, Izaola O, et al. Effect of fatty acid-binding protein 2 Ala54Thr genotype on weight loss and cardiovascular risk factors after a high-polyunsaturated fat diet in obese patients. Journal of investigative medicine. 2012;60(8):1194–1198. doi: 10.2310/JIM.0b013e318271fb25
  29. Wangab S, Panab Y, Liab J, et al. Endogenous omega-3 long-chain fatty acid biosynthesis from alpha-linolenic acid is affected by substrate levels, gene expression, and product inhibition. RSC Advances. 2017;7:40946-40951. doi: 10.1039/C7RA06728C
  30. Arendt BM, Comelli EM, Ma DW, et al. Altered hepatic gene expression in nonalcoholic fatty liver disease is associated with lower hepatic n-3 and n-6 polyunsaturated fatty acids. Hepatology. 2015;61(5):1565–78. doi: 10.1002/hep.27695
  31. Nasibulina ES, Borisova AV, Akhmetov II. Study on association of fabp2 gene ala54thr polymorphism with risk of obesity, body fat mass and physical activity. Problems of nutrition. 2013;82(5):23–28. EDN: REXBOZ

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 86496 от 11.12.2023 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ЭЛ № ФС 77 - 80673 от 23.03.2021 г
.