A comprehensive study of nonuniformity properties of the LiCoO2 thin-film cathode fabricated by RF sputtering

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The influence of nonuniformity properties of the LiCoO2 cathode film deposited by magnetron sputtering on the capacity of all-solid-state thin-film lithium-ion batteries (ASSLib) was studied. It was found that the film nonuniformity corresponds to the magnetron plasma density distribution and the angular distribution of sputtered particles. The capacity distribution of the ASSLib with LiCoO2 cathode depending on the distance to the substrate center was studied. The maximum capacity corresponded to the dense part of the toroidal region of the magnetron plasma. It was determined that the main causes of batteries capacity decline in the central part and on the edge of the substrate are the impurity phase of lithium cobaltate and the smaller thickness of the cathode layer, respectively.

Авторлар туралы

S. Kurbatov

Valiev Institute of Physics and Technology of RAS, Yaroslavl Branch

Хат алмасуға жауапты Автор.
Email: kurbatov-93@bk.ru
Ресей, Yaroslavl

A. Rudy

Valiev Institute of Physics and Technology of RAS, Yaroslavl Branch

Email: rudy@uniyar.ac.ru
Ресей, Yaroslavl

V. Naumov

Valiev Institute of Physics and Technology of RAS, Yaroslavl Branch

Email: kurbatov-93@bk.ru
Ресей, Yaroslavl

A. Mironenko

Valiev Institute of Physics and Technology of RAS, Yaroslavl Branch

Email: kurbatov-93@bk.ru
Ресей, Yaroslavl

O. Savenko

P.G. Demidov Yaroslavl State University

Email: kurbatov-93@bk.ru
Ресей, Yaroslavl

M. Smirnova

Valiev Institute of Physics and Technology of RAS, Yaroslavl Branch

Email: kurbatov-93@bk.ru
Ресей, Yaroslavl

L. Mazaletsky

Patrice Lumumba Peoples’ Friendship University of Russia

Email: kurbatov-93@bk.ru
Ресей, Moscow

D. Pukhov

Valiev Institute of Physics and Technology of RAS, Yaroslavl Branch

Email: kurbatov-93@bk.ru
Ресей, Yaroslavl

Әдебиет тізімі

  1. Bates J.B., Dudney N.J., Gruzalski G.R., Zuhr R.A., Choudhury A., Luck C.F., Robertson J.D. Electrical properties of amorphous lithium electrolyte thin films // Solid State Ionics. 1992. V. 53—56. P. 647—654. https://doi.org/10.1016/0167-2738(92)90442-R
  2. Bates J.B., Dudney N., Gruzalski G., Zuhr R., Choudhury A., Luck C., Robertson J. Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries // J. Power Sources. 1993. V. 43. No 1—3. P. 103—110. https://doi.org/10.1016/0378-7753(93)80106-Y
  3. Bates J.B., Gruzalski G.R., Dudney N.J., Luck C.F., Yu X. Rechargeable thin-film lithium batteries // Solid State Ionics. 1994. V. 70. P. 619—628. https://doi.org/10.1016/0167-2738(94)90383-2
  4. Bates J.B., Dudney N.J., Lubben D.C., Gruzalski G.R., Kwak B.S., Yu X., Zuhr R.A. Thin-film rechargeable lithium batteries // J. Power Sources. 1995. V. 54. No 1. P. 58—62. https://doi.org/10.1016/0378-7753(94)02040-A
  5. Yu X., Bates J.B., Jellison-Jr. G.E., Hart F.X. A stable thin‐film lithium electrolyte: lithium phosphorus oxynitride // Journal of the electrochemical society. 1997. V. 144. No 2. P. 524. doi: 10.1149/1.1837443.
  6. Yu X., Bates J.B., Jellison G.E. Characterization of Lithium Phosphorous Oxynitride Thin Films, Proceedings of the Symposium on Thin Film Solid Ionic Devices and Materials. 1995. V. 95—22. P. 23—30.
  7. Bates J.B., Dudney N.J., Luck C.F., Sales B.C., Zuhr R.A., Robertson J.D. Deposition and characterization of Li2O—SiO2—P2O5 thin films // Journal of the American Ceramic Society. 1993. V. 76. No 4. P. 929—943. https://doi.org/10.1111/j.1151-2916.1993.tb05317.x
  8. Bubulinca C., Kazantseva N.E., Pechancova V., Joseph N., Fei H., Venher M., Ivanichenko A., Saha P. Development of All-Solid-State Li-Ion Batteries: From Key Technical Areas to Commercial Use // Batteries. 2023. V. 9. No 3. P. 157. https://doi.org/10.3390/batteries9030157
  9. Wu B., Chen C., Danilov D.L., Eichel R.-A., Notten P.H.L. All-solid-state thin film Li-ion batteries: New challenges, new materials, and new designs // Batteries. 2023. V. 9. No 3. P. 186. https://doi.org/10.3390/batteries9030186
  10. Ma Y., Li L., Qian J., Qu W., Luo R., Wu F., Chen R. Materials and structure engineering by magnetron sputtering for advanced lithium batteries // Energy Storage Materials. 2021. V. 39. P. 203—224. https://doi.org/10.1016/j.ensm.2021.04.012
  11. Oukassi S., Bazin A., Secouard C., Chevalier I., Poncet S., Poulet S., Boissel J-M., Geffraye F., Brun J., Salot R. Millimeter scale thin film batteries for integrated high energy density storage // 2019 IEEE International Electron Devices Meeting (IEDM). IEEE. 2019. P. 26.1. 1-26.
  12. Koo M., Park K.-I., Lee S.H., Suh M., Jeon D.Y., Choi J.W., Kang K., Lee K.J. Bendable inorganic thin-film battery for fully flexible electronic systems // Nano letters. 2012. V. 12. No 9. P. 4810—4816. https://doi.org/10.1021/nl302254v
  13. Kolesnikov A., Kryukov Y., Gafurov M., Bodnarchuk V. Prediction of Target Erosion for Planar Magnetron Sputtering Systems // Coatings. 2022. V. 12. No 12. P. 1807. https://doi.org/10.3390/coatings12121807
  14. Swann S. Film thickness distribution in magnetron sputtering // Vacuum. 1988. V. 38. No 8—10. P. 791—794. https://doi.org/10.1016/0042-207X(88)90465-4
  15. Soloviev A.A., Sochugov N.S., Oskomov K.V., Kovsharov N.F. Film thickness distribution in magnetron sputtering system with the round cathode // Izv. vuzov. Physics 2006. V. 8. Pp. 491—493.
  16. Zhang X.B., Pei Z.L., Gong J., Sun C. Investigation on the electrical properties and inhomogeneous distribution of ZnO: Al thin films prepared by dc magnetron sputtering at low deposition temperature // Journal of applied physics. 2007. V. 101. P. 014910. https://doi: 10.1063/1.2407265
  17. Tadjine R., Alim M. M., Kechouane M. The erosion groove effects on RF planar magnetron sputtering // Surface and Coatings Technology. 2017. V. 309. P. 573—578. https://doi.org/10.1016/j.surfcoat.2016.12.009
  18. Mientus R., Weise M., Seeger S., Heller R., Ellmer K. Electrical and optical properties of amorphous SnO2: Ta films, prepared by DC and RF magnetron sputtering: A systematic study of the influence of the type of the reactive gas // Coatings. 2020. V. 10. No 3. P. 204. 10.3390/coatings10030204' target='_blank'>https://doi: 10.3390/coatings10030204
  19. Nomoto J., Makino H., Inaba K., Kobayashi S., Yamamoto T. Effects of the erosion zone of magnetron sputtering targets on the spatial distribution of structural and electrical properties of transparent conductive Al-doped ZnO polycrystalline films // J. Appl. Phys. 2018. V. 124. No 6. P. 065304. https://doi: 10.1063/1.5038162
  20. Minami T., Oda J., Nomoto J., Miyata T. Effect of target properties on transparent conducting impurity-doped ZnO thin films deposited by DC magnetron sputtering // Thin Solid Films. 2010. V. 519. No 1. P. 385—390. 10.1016/j.tsf.2010.08.007' target='_blank'>https://doi: 10.1016/j.tsf.2010.08.007
  21. Murakami Y., Shingyoji T. Compositional difference between films and targets in sputtering of refractory metal silicides // J. Vac. Sci. Technol. 1990. V. 8. No 2. P. 851—854. https://doi: 10.1116/1.576929
  22. Sato H., Ikeda N., Tawara H., Sato M. Investigation of Composition Uniformity of MoSix Sputtering Films Based on Measurement of Angular-distribution of Sputtered Atoms // Thin Solid Films. 1993. V. 236. No 1—2. P. 27—31. https://doi.org/10.1016/0040-6090(93)90245-K
  23. Broadway D.M., Platonov Y.Y., Gomez L.A. Achieving desired thickness gradients on flat and curved substrates // X-Ray Optics, Instruments, and Missions II. SPIE. 1999. V. 3766. P. 262—274. https://doi.org/10.1117/12.363643
  24. Wang B., Fu X., Song S., Chu H.O., Gibson D., Li C., Shi Y., Wu Z. Simulation and optimization of film thickness uniformity in physical vapor deposition // Coatings. 2018. V. 8. No 9. P. 325. 10.3390/coatings8090325' target='_blank'>https://doi: 10.3390/coatings8090325
  25. Martynenko Y. V., Rogov A. V., Shul’Ga V. I. Angular distribution of atoms during the magnetron sputtering of polycrystalline targets // Technical physics. 2012. V. 57. P. 439—444. doi: 10.1134/S1063784212040196.
  26. Whitacre J.F., West W.C., Ratnakumar B.V. The influence of target history and deposition geometry on RF magnetron sputtered LiCoO2 thin films // Journal of power sources. 2001. V. 103. No 1. P. 134—139. https://doi.org/10.1016/S0378-7753(01)00849-7.
  27. Rudy A.S., Mironenko A.A., Naumov V.V., Fedorov I.S., Skundin A.M., Tortseva Y.S. Thin-Film Solid State Lithium-Ion Batteries of the LiCoO2/LiPON/Si@O@Al System // Russian Microelectronics. 2021. V. 50. No 5. P. 333—338. https://doi.org/10.1134/S106373972105005X
  28. Neudecker B.J., Dudney N.J., Bates J.B. “Lithium‐Free” thin‐film battery with in situ plated Li anode //Journal of the Electrochemical Society. 2000. V. 147. No 2. P. 517. doi: 10.1149/1.1393226.
  29. Bates J.B., Dudney N.J., Neudecker B.J., Hart F.X., Jun H.P., Hackney S.A. Preferred orientation of polycrystalline LiCoO2 films // J. Electrochem. Soc. 2000. V. 147. No 1. P. 59. doi: 10.1149/1.1393157.
  30. Yoon M., Lee S., Lee D., Kim J., Moon J. All-solid-state thin film battery based on well-aligned slanted LiCoO2 nanowires fabricated by glancing angle deposition // Applied Surface Science. 2017. V. 412. P. 537—544. https://doi.org/10.1016/j.apsusc.2017.03.268
  31. Behrisch R. Sputtering by particle bombardment I. Physical sputtering of single-element solids. Springer-Verlag. 1981. V. 47.
  32. Danilin B.S., Syrchin V.K. Magnetron sputtering systems. Moscow: Radio and communication, 1982. 72 p. (in Russian)
  33. Shi Y., Huang Q., Qi R., Shen Z., Zhang Z., Wang Z. Theoretical and experimental study of particle distribution from magnetron sputtering with masks for accurate thickness profile control // Coatings. 2020. V. 10. No 4. P. 357. 10.3390/coatings10040357' target='_blank'>https://doi: 10.3390/coatings10040357
  34. Yamamura Y., Takiguchi T., Ishida M. Energy and angular distributions of sputtered atoms at normal incidence // Radiation effects and defects in solids. 1991. V. 118. No 3. P. 237—261. doi: 10.1080/10420159108221362.
  35. Olson R.R., Wehner G.K. Composition variations as a function of ejection angle in sputtering of alloys // J. Vac. Sci. Technol. 1977. V. 14. No 1. P. 319—321. https://doi: 10.1116/1.569198
  36. Olson R.R., King M.E., Wehner G.K. Mass effects on angular distribution of sputtered atoms // Journal of Applied Physics. 1979. V. 50. No 5. P. 3677—3683. https://doi: 10.1063/1.326321
  37. Kovba L.M., Trunov V.K. X-ray diffraction analysis (2 ed.). Moscow: Moscow State University. 1976. 232 p. (in Russian)
  38. Jung K.T., Cho G.-B., Kim K.-W., Nam T.-H., Jeong H.- M., Huh S.-C., Chung H.-S., Noh J.-P. Influence of the substrate texture on the structural and electrochemical properties of sputtered LiCoO2 thin films // Thin solid films. 2013. V. 546. P. 414—417. https://doi.org/10.1016/j.tsf.2013.05.135
  39. Liao C. L., Lee Y. H., Fung K. Z. The film growth and electrochemical properties of rf-sputtered LiCoO2 thin films // Journal of alloys and compounds. 2007. V. 436. No 1—2. P. 303—308. 10.1016/j.jallcom.2006.07.033' target='_blank'>https://doi: 10.1016/j.jallcom.2006.07.033
  40. Prachařová J., Přidal J., Bludská J., Jakubec I., Vorlı́ček V., Málková Z., Makris T. D., Giorgi R., Jastrabı́k L. LiCoO2 thin-film cathodes grown by RF sputtering // Journal of power sources. 2002. V. 108. No 1—2. P. 204—212. https://doi.org/10.1016/S0378-7753(02)00018-6
  41. Xie J., Imanishi N., Zhang T., Hirano A., Takeda Y., Yamamoto O. Li-ion transport in all-solid-state lithium batteries with LiCoO2 using NASICON-type glass ceramic electrolytes // Journal of Power Sources. 2009. V. 189. No 1. P. 365—370. 10.1016/j.jpowsour.2008.08.015' target='_blank'>https://doi: 10.1016/j.jpowsour.2008.08.015
  42. Whitacre J.F., West W.C., Brandon E., Ratnakumar B.V. Crystallographically oriented thin-film nanocrystalline cathode layers prepared without exceeding 300 °C // J. Electrochem. Soc. 2001. V. 148. No 10. P. A1078. doi: 10.1149/1.1400119.
  43. Park H.Y., Lee S.R., Lee Y.J., Cho B.W., Cho W.I. Bias sputtering and characterization of LiCoO2 thin film cathodes for thin film microbattery // Materials Chemistry and Physics. 2005. V. 93. No 1. P. 70—78.
  44. Kuwata N., Kumar R., Toribami K., Suzuki T., Hattori T., Kawamura J. Thin film lithium ion batteries prepared only by pulsed laser deposition // Solid state ionics. 2006. V. 177. No 26—32. P. 2827—2832. https://doi.org/10.1016/j.ssi.2006.07.023
  45. Jeon S.W., Lim J.-K., Lim S.-H., Lee S.-M. As-deposited LiCoO2 thin film cathodes prepared by rf magnetron sputtering // Electrochimica Acta. 2005. V. 51. No 2. P. 268—273. doi: 10.1016/j.electacta.2005.04.035.
  46. Inaba M., Iriyama Y., Ogumi Z., Todzuka Y., Tasaka A. Raman study of layered rock‐salt LiCoO2 and its electrochemical lithium deintercalation // J. Raman Spectrosc. 1997. V. 28. No 8. P. 613—617.
  47. Tintignac S., Baddour-Hadjean R., Pereira-Ramos J.-P., Salot R. High performance sputtered LiCoO2 thin films obtained at a moderate annealing treatment combined to a bias effect // Electrochimica acta. 2012. V. 60. P. 121—129. 10.1016/j.electacta.2011.11.033' target='_blank'>https://doi: 10.1016/j.electacta.2011.11.033
  48. Julien С., Mauger А., Vijh А., Zaghib K. Lithium batteries: science and technology. Springer, 2008.
  49. Thackeray M.M., Baker S.D. and Adendorff K.T. Lithium insertion into Co3O4: a preliminary investigation //Solid State Ionics. 1985. V. 17. No 2. P. 175—181. https://doi.org/10.1016/0167-2738(85)90069-4

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2024