Application of the finite element method for calculating the surface acoustic wave parameters and devices

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A series of models based on the finite element method (FEM) for analyzing the parameters of surface acoustic waves (SAW) and devices based on them are described. The computer method for generating models in the COMSOL Multiphysics is described. Three main studies in the COMSOL are described and graphically illustrated: stationary, eigenfrequency, frequency domain. The properties of Rayleigh waves and leaky SAW are analyzed. A visualization of a number of characteristics is presented. The analysis of such parameters as phase velocity of the wave, electromechanical coupling coefficient, and static capacitance of transducer is considered. The examples consider an equidistant transducer, a transducer with split electrodes, and a unidirectional transducer of the DART type. Methods for analyzing SAW harmonics and the waveguide effect are proposed. It is shown that the model is valid for both single-crystal substrates and layered structures. The analysis of the temperature coefficient of frequency for such structures as TCSAW and I.H.P.SAW is considered. A model for calculating the amplitude-frequency responses of devices is presented. It is shown that the data obtained as a result of numerical analysis correspond to experimental data and known literature sources.

Texto integral

Acesso é fechado

Sobre autores

A. Koigerov

St. Petersburg State Electrotechnical University “LETI” Saint Petersburg Electrotechnical University

Autor responsável pela correspondência
Email: a.koigerov@gmail.com
Rússia, St. Petersburg

Bibliografia

  1. Aristarkhov G.M., Gulyaev Yu.V., Dmitriev V.F. et al. Fil’tratsiya i spektral’nyi analiz radiosignalov. Algoritmy. Struktury. Ustroistva (Filtering and Spectral Analysis of Radio Signals. Algorithms. Structures. Devices). Moscow: Radiotekhnika, 2020.
  2. Bagdasaryan A., Sinitzina T., Mashinin O., Ivanov P., Egorov R. SAW frequency selsection devices for modern communication, radiolocation and telecommunication systems // Electronics: Science, Technology, Business. 2013. No. 8. P. 128–136 [in Russian].
  3. Kryshtal R.G., Medved A.V. Primenenie rezonatorov na poverknostnykh akusticheskikh volnakh dlya izmereniya sverkhmalykh izmereniy temperatury // Bulletin of the Russian Academy of Scincec: Physics. 2016. V. 80. P. 1357–1362 [in Russian].
  4. Antcev I.G., Bogoslovsky S.V., Sapognikov G.A., Zhgoon S.A., Zhezherin A.R., Trofimov A.N., Shvetsov A.S. Passivhyye besprovodnyye datchiki i radiometki na printsipakh funktsional’noy elektroniki [Passive Wireless Sensors and Radio Tags Based on the Principles of Functional Electronics]. Moscow: Nauka, 2021. 518 p. [in Russian].
  5. Anisimkin V.I., Kuznetsova I.E. Selective surface acoustic wave detection of the temperature of a liquid microsample // Journal of Communications Technology and Electronics. 2019. Т. 64. Nо. 8. P. 823–826.
  6. Koigerov A.S. Achievement of Critical and Limiting Parameters in Surface Acoustic Wave Micro-devices // Nano- I mikrosistemnaya tekhnika. 2022. V. 24. No. 4. P. 199–207 [in Russian].
  7. Zabenkov I.I., Isakovich N.N., Zhdanov S.L., Yenkov D.A., Zabenkov A.I. Digital receivers design // Doklady BGUIR. 2006. No. 1. P. 44–54 [in Russian].
  8. Belchikov S. Fazovyy shum: kak spustit’sya nizhe — 120 dB/Hz na otstroike 10 kHz v diapazone chastot do 14 GHz, ili bor’ba za detsibely // Components and technologies. 2009. No. 5 (94). P. 139–146 [in Russian].
  9. Dmitriev V.F., Noskov A.N. Theoretical and experimental studies of quasi-surface acoustic wave resonators // Acoustical physics. 2010. V. 56. No. 4. P. 475–481.
  10. Loiko V.A., Dobrovolsky A.A., Kochemasov V.N., Safin A.R. Self-Oscillators Based on Surface Acoustic Waves (A Review) // Journal of the Russian Universities. Radioelectronics. 2022. V. 25. No. 3. P. 6–21 [in Russian].
  11. Dieulesaint E. and Royer D. Ondes élastiques dans les solides: Application au traitement du signal. Paris: Masson, 1974.
  12. Koigerov A.S., Korlyakov A.V. Finite Element Modeling of Surface Acoustic Wave Devices Using COMSOL // Russ. Microelectron. 2022. V. 51. P. 226–235.
  13. Koigerov A.S. Analytical Approach to Design-ing a Combined-Mode Resonator Filter on Surface Acoustic Waves Using the Model of Coupling of Modes // Journal of the Russian Universities. Radioelectronics. 2022. V. 25. No. 2. P. 16–28 [in Russian].
  14. Sveshnikov B. Discrete analysis of regular systems // IEEE Intern. Ultroson. Symp. San Diego, USA. 11–14 Oct. 2010. P. 1890–1893. doi: 10.1109/ULTSYM.2010.5935881.
  15. Osetrov A.V. and Nguen V.Sh. Calculation of the parameters of surface acoustic waves in piezoelectrics using the finite element method // Vychisl. Mekh. Splosh. Sred. 2011. V. 4. No. 4. P. 71–80.
  16. Sun X., Zhou S., Cheng J., Lin D., Liu W. Full extraction of the COM parameters for Rayleigh type surface acoustic wave. AIP Adv. 2022. No. 12. Р. 025007.
  17. Malocha S., Abbott B.P., Naumenko N. Numerical Modeling of One-Port Resonators Based on Harmonic Admittance // IEEE Ultrasonics Symposium. 2004. Montreal, QC, Canada. V. 3. P. 2027–2030. DOI: 101109/ULTSYM.2004.1418233.
  18. Wallner P., Ruile W., Weigel R. Theoretical Studies on Leaky-SAW Properties Influenced by Layers on Anisotropic Piezoelectric Crystals // IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 2000. V. 47. No. 5. P. 1235–1240.
  19. Abbott B.P., Hartmann C.S. An efficient evaluation of the electrostatic fields in IDT’s with periodic electrode sequences // in Proc. 1993 IEEE Ultrason. Symp. P. 157–160.
  20. Benetti M., Cannat`a D., Di Pietrantonio F., Verona E. Growth of AlN Piezoelectric Film on Diamond for High-Frequency Surface Acoustic Wave Devices // IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 2005. V. 52. No. 10. P. 1806–1811.
  21. Zhang Q., Chen Z., Chen Y., Dong J., Tang P., Fu S., Wu H., Ma J., Zhao X. Periodic Analysis of Surface Acoustic Wave Resonator with Dimensionally Reduced PDE Model Using COMSOL Code // Micromachines. 2021. 12(2):141.
  22. Hickernell F.S. Advances in Surface Acoustic Wave Technology, Systems and Applications. V. 1. Eds. Ruppel C.C.W., Fieldly T. A. Singapore: World Scientific, 2001.
  23. Takai T., Iwamoto H., Takamine Y., Fuyutsume T., Nakao T., Hiramoto M., Toi T., Koshino M. I.H.P. SAW technology and its application to microacoustic components (Invited) // In Proceedings of the IEEE International Ultrasonics Symposium (IUS). Washington, DC, USA. 6–9 September 2017. P. 1–8.
  24. Lilhare Y., Sinha S. Performance analysis of SAW TCRFs through multiphysics simulation // 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT). Bangalore, India. 2020. P. 1–5.
  25. Kvashnin G.M., Sorokin B.P., Burkov S.I. Study of propagation of microwave lamb waves in a piezoelectric layered structure // Acoust. Phys. 2021. V. 67. P. 590–596.
  26. Timoshenko P.E., Shirokov V.B., Kalinchuk V.V. Finite-Element Modeling of SAW-Filters Based on Thin Films of Barium Strontium Titanate // Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation. 2020. V. 17. No. 4. P. 48–56 [in Russian].
  27. Kuznetsova I.E., Smirnov A.V., Plekhanova Y.V., Reshetilov A.N., Wang G.-J. Effect of the Aperture Interdigital Transducer on the Characteristics of Its Output Signal in a Piezoelectric Plate // Bulletin of the Russian Academy of Scincec: Physics. 2020. V. 84. No. 6. P. 644–647.
  28. Zhgoon S., Tsimbal D., Shvetsov A., Bhattacharjee K. 3D Finite Element Modeling of Real Size SAW Devices and Experimental Validation // 2008 IEEE International Ultrasonics Symposium, Beijing, China. 2008. P. 1932–1935.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. The IDTs considered in the work: a — equidistant with electrodes of width λ/4; b — with split electrodes of width λ/8; c — unidirectional DART type; d — principle of transition to MPP. Designations: λ — wavelength; p — electrode repetition period; w — electrode width.

Baixar (107KB)
3. Fig. 2. Test cells for single-crystal piezoelectric substrates: a — free surface; b — example of a grid; c — pattern of mechanical displacements of the Rayleigh wave for a 128° Y — X LiNbO3 substrate for one of the natural frequencies; d — pattern of mechanical displacements for a surfactant for 36° Y — X LiTaO3 for one of the natural frequencies. Features of the model: 1 — piezoelectric crystal; 2 — perfectly matched layer; λ — wavelength.

Baixar (264KB)
4. Fig. 3. Admittance and mechanical displacement patterns for the test electrode structure on a 36° Y – X LiTaO₃ substrate.

Baixar (147KB)
5. Fig. 4. Admittance for test electrode structures with a period p = λ / 2 for different metallization thicknesses and h / λ ratios on substrates: a — 36° Y — X LiTaO₃; b — 42° Y — X LiTaO₃; h / λ: 1 – 1%; 2 – 3%; 3 – 5%; 4 – 7%.

Baixar (213KB)
6. Fig. 5. Result of static analysis for a unidirectional DART-type transducer in the form of surface potential distribution.

Baixar (106KB)
7. Fig. 6. Test electrode cell for 128° Y — X LiNbO₃ substrate with period p = λ / 4 and electrode width λ / 8 for analysis in the region of natural frequencies and the pattern of mechanical displacements of the Rayleigh wave: a — cell geometry; b — fundamental harmonic; c — 3rd harmonic; d — 5th harmonic.

Baixar (124KB)
8. Fig. 7. Result of calculating the conductivity (Y11) of the converter for a 128° Y — X LiNbO₃ substrate with a period p = λ / 4 and an electrode width of λ / 8 (frequency domain analysis): 1 — real part of the conductivity; 2 — imaginary part of the conductivity; * — fundamental harmonic; ** — parasitic BAW; *** — 3rd harmonic.

Baixar (98KB)
9. Fig. 8. Test cell for the AlN/diamond layered structure: a – cell geometry; b – pattern of mechanical displacements of the Rayleigh wave; c – pattern of mechanical displacements of the Sezawa wave. Features of the model: 1 – piezoelectric film of aluminum nitride; 2 – diamond substrate.

Baixar (134KB)
10. Fig. 9. Dependence of the phase velocity (a) of acoustic waves and KEMS (b) on the thickness of the aluminum nitride film: 1 - Rayleigh wave; 2 - Sezawa wave.

Baixar (133KB)
11. Fig. 10. TCC: 1 — traditional single-crystal substrate 36° Y — X LiTaO₃; 2 — dependence on the SiO₂ film thickness for the TC-SAW structure; 3 — dependence on the thickness of the piezoelectric material layer 36° Y — X LiTaO₃ at a constant film thickness HSiO₂ = 30% for the I.H.P. structure.

Baixar (198KB)
12. Fig. 11. The principle of taking into account waveguide modes: a — calculated frequency response of one filter element on transverse modes; b — test structure and pictures of mechanical displacements of transverse modes: 1 — geometry of a cell with a period p = λ / 2; 2 — symmetric mode S₀; 3 — antisymmetric mode S₁; 4 — symmetric mode S₂; 5 — antisymmetric mode S₃.

Baixar (273KB)
13. Fig. 12. Model of the filter on unidirectional DART-type converters for FEM calculation in COMSOL: a — conditional view of the filter with connected electrical ports in the “normal” connection; b — “reverse” connection; c — DART geometry; d — results of calculating the total mechanical displacement for one frequency point; d — calculated frequency response: 1 — “normal” connection without matching; 2 — “normal” connection with matching; 3 — “reverse” connection. Designations: F — “forward” — direction of maximum SAW radiation; R — “reverse” — direction of minimum wave radiation.

Baixar (300KB)
14. Fig. 13. 3D model of a split-transducer filter with apodization according to the Hamming function in COMSOL: a – Hamming function; b – fragment of the filter with an input IDT; c – general view of the filter geometry.

Baixar (439KB)
15. Fig. 14. Comparison of the calculated (1) and experimental (2) frequency response of the filter.

Baixar (95KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024