The structure and formation of non-volatile memory cells of Superflash
- Autores: Abdullaev D.A.1, Bobrova E.V.1, Milovanov R.A.1
-
Afiliações:
- Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences
- Edição: Volume 53, Nº 3 (2024)
- Páginas: 243-258
- Seção: ПАМЯТЬ
- URL: https://rjonco.com/0544-1269/article/view/655225
- DOI: https://doi.org/10.31857/S0544126924030061
- ID: 655225
Citar
Resumo
Split-gate embedded Flash memory technology has been around for decades and has become the standard for a wide range of devices, such as microcontrollers and smart cards. Among the, due to a number of advantages, Silicon Storage Technology Super Flash non-volatile memory technology has become the most widespread. This article presents the results of a study of the memory cells structure, examines in detail the principle of their operation and the main technological stages of the production process of forming transistor structures.
Palavras-chave
Texto integral

Sobre autores
D. Abdullaev
Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: abdullaev.d@inme-ras.ru
Rússia, Moscow
E. Bobrova
Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences
Email: abdullaev.d@inme-ras.ru
Rússia, Moscow
R. Milovanov
Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences
Email: abdullaev.d@inme-ras.ru
Rússia, Moscow
Bibliografia
- Molas G., Nowak E. Advances in emerging memory technologies: From data storage to artificial intelligence // Applied Sciences. 2021. V. 11. No. 23. P. 11254. https://doi.org/10.3390/app112311254
- Milovanov R.A., Kelm E.A. Structure of EEPROM and FLASH Memory Cells // Nano- and Microsystem Technique. 2015. V. 4. No. 177. P. 45—59.
- Abdullaev D.A., Milovanov R.A., Volkov R.L., Borgard N.I., Lantsev A.N., Vorotilov K.A., Sigov A.S. Ferroelectric memory: state-of-the-art manufacturing and research // Russian Technological Journal. 2020. V. 8. No. 5. P. 44—67. https://doi.org/10.32362/2500-316X-2020-8-5-44-67
- Kim S.S., Yong S.K., Kim W., Kang S., Park H.W., Yoon K.J., Dong S.S., Lee S., Hwang C.S. Review of semiconductor flash memory devices for material and process issues // Advanced Materials. 2022. P. 2200659. https://doi.org/10.1002/adma.202200659
- Koltsov S. SuperFlash is a successful technology for building memory chips. Part 2 // Electronic components. 2013. No. 1. P. 101—105.
- Do N., Van Tran H., Kotov A., Tiwari V. Split-gate floating poly SuperFlash memory technology, design, and reliability // Embedded Flash memory for embedded systems: technology, design for sub-systems, and innovations. 2018. P. 131—178. https://doi.org/10.1007/978-3-319-55306-1_5
- Tkachev Y., Kotov A. Generation of single-and double-charge electron traps in tunnel oxide of flash memory cells under Fowler-Nordheim stress // 2011 IEEE International Integrated Reliability Workshop Final Report. 2011. P. 101—104. https://doi.org/10.1109/IIRW.2011.6142599
- Tkachev Y., Liu X., Kotov A. Floating-gate corner-enhanced poly-to-poly tunneling in split-gate flash memory cells // IEEE transactions on electron devices. 2011. V. 59. No. 1. P. 5—11. https://doi.org/10.1109/TED.2011.2171346
- Tkachev Y. Field-induced generation of electron traps in the tunnel oxide of flash memory cells // 2015 IEEE International Integrated Reliability Workshop. 2015. P. 99—102. https://doi.org/10.1109/IIRW.2015.7437077
- Tkachev Y., Walls J.A. Silicon dioxide degradation in strongly non-uniform electric field // 2017 IEEE International Integrated Reliability Workshop. 2017. P. 1—4. https://doi.org/10.1109/IIRW.2017.8361238
- Lai S. Flash memories: Where we were and where we are going // International Electron Devices Meeting 1998. Technical Digest (Cat. No. 98CH36217). 1998. P. 971—973. https://doi.org/10.1109/IEDM.1998.746516
- Sowards D. Non-Volatile Memory: The principles, the technologies, and their significance to the smart card integrated circuit, 1999.
- Kianian S., Levi A., Lee D., Hu Y.W. A novel 3 volts-only, small sector erase, high density flash E2PROM // Proceedings of 1994 VLSI Technology Symposium. 1994. P. 71—72. https://doi.org/10.1109/VLSIT.1994.324372
- Smeys P. Local oxidation of silicon for isolation. Stanford University: PhD Thesis, 2000.
- Shauly E.N., Rosenthal S. Coverage layout design rules and insertion utilities for CMP-related processes // Journal of Low Power Electronics and Applications. 2020. V. 11. No. 1. P. 2. https://doi.org/10.3390/jlpea11010002
- Sung H.C., Lei T.F., Huang C.M., Kao Y.C., Lin Y.T., Wang C.S. New triple self-aligned (SA3) split-gate flash cell with T-shaped source coupling // Japanese journal of applied physics. 2005. V. 44. No. 10R. P. 7377. https://doi.org/10.1143/JJAP.44.7377
- Mih R., Harrington J., Houlihan K., Lee H.K., Chan K., Johnson J., Chen B., Yan J., Lam C. 0.18 µm modular triple self-aligned embedded split-gate flash memory // 2000 Symposium on VLSI Technology. Digest of Technical Papers (Cat. No. 00CH37104). 2000. P. 120—121. https://doi.org/10.1109/VLSIT.2000.852793
- Chu W.T., Lin H.H., Hsieh C.T., Sung H.C., Wang Y.H., Lin Y.T., Wang C.S. Shrinkable triple self-aligned field-enhanced split-gate flash memory // IEEE transactions on electron devices. 2004. V. 51. No. 10. P. 1667—1671. https://doi.org/10.1109/TED.2004.835995
- Sax H., Kruwinus H., Waters E.A. Polysilicon overfill etch back using wet chemical spin-process technology. An alternative to traditional dry etch and CMP technigues // 10th Annual IEEE/SEMI. Advanced Semiconductor Manufacturing Conference and Workshop. ASMC 99 Proceedings (Cat. No. 99CH36295). 1999. P. 233—238. https://doi.org/10.1109/ASMC.1999.798231
- Do N., Tee L., Hariharan S., Lemke S., Tadayoni M., Yang W., Yue I. A 55 nm logic-process-compatible, split-gate flash memory array fully demonstrated at automotive temperature with high access speed and reliability // 2015 IEEE International Memory Workshop. 2015. P. 1—3. https://doi.org/10.1109/IMW.2015.7150267
- Tkachev Y. Extraction of floating-gate capacitive parameters in split-gate flash memory cells // 2016 International Conference on Microelectronic Test Structures (ICMTS). 2016. P. 110—115. https://doi.org/10.1109/ICMTS.2016.7476186
- Abdullaev D.A. Change set of applied materials at reduction topological norms production of integrated microcircuits // Nano- and Microsystems Technology. 2014. No. 5. P. 32—38.
- Shum D., Luo L.Q., Kong Y.J., Deng F.X., Qu X., Teo Z.Q., Liu X. 40 nm embedded self-aligned split-gate flash technology for high-density automotive microcontrollers // 2017 IEEE International Memory Workshop. 2017. P. 1—4. https://doi.org/10.1109/IMW.2017.7939068
- Guo X., Bayat F.M., Prezioso M., Chen Y., Nguyen B., Do N., Strukov D.B. Temperature-insensitive analog vector-by-matrix multiplier based on 55 nm NOR flash memory cells // 2017 IEEE Custom Integrated Circuits Conference. 2017. P. 1—4. https://doi.org/10.1109/CICC.2017.7993628
- Jourba S., Bollon N., Decobert C., Festes G., Bertello B., Zhou F., Beyer S. Performance and reliability of 4 Mb eFLASH memory array featuring 28 nm split-gate cell with HKMG select transistor // 2020 IEEE International Memory Workshop. 2020. P. 1—4. https://doi.org/10.1109/IMW48823.2020.9108118
- Richter R., Trentzsch M., Dünkel S., Müller J., Moll P., Bayha B., Do N. A cost-efficient 28 nm split-gate eFLASH memory featuring a HKMG hybrid bit cell and HV device // 2018 IEEE International Electron Devices Meeting. 2018. P. 18.5.1—18.5.4. https://doi.org/10.1109/IEDM.2018.8614652
- Do N., Lemke S., Tran H., Tiwari V., Reiten M. Scaling of split-gate flash memory for embedded controllers and machine learning applications // 2020 International Symposium on VLSI Technology, Systems and Applications. 2020. P. 19—20. https://doi.org/10.1109/VLSI-TSA48913.2020.9203593
- Chandra Z., Mubarokah I., Sulthoni M.A. Split-Gate Flash Memory: from Planar to 3D // 2021 International Symposium on Electronics and Smart Devices. 2021. P. 1—5. https://doi.org/10.1109/ISESD53023.2021.9501739
- Do N., Kim J., Lemke S., Tee L., Tkachev Y., Liu X., Reiten M. Scaling split-gate flash memory technology for advanced MCU and emerging applications // 2019 IEEE 11th International Memory Workshop. 2019. P. 1—4. https://doi.org/10.1109/IMW.2019.8739270
- Kotov A., Levi A., Tkachev Y., Markov V. Tunneling phenomenon in SuperFlash cell // Proc. NVM Tech. Symp. 2002. P. 110—115.
- Guan H., Lee D., Li G.P. An analytical model for optimization of programming efficiency and uniformity of split gate source-side injection SuperFlash memory // IEEE Transactions on electron devices. 2003. V. 50. No. 3. P. 809—815. https://doi.org/10.1109/TED.2003.811416
Arquivos suplementares
