The structure and formation of non-volatile memory cells of Superflash
- Authors: Abdullaev D.A.1, Bobrova E.V.1, Milovanov R.A.1
-
Affiliations:
- Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences
- Issue: Vol 53, No 3 (2024)
- Pages: 243-258
- Section: ПАМЯТЬ
- URL: https://rjonco.com/0544-1269/article/view/655225
- DOI: https://doi.org/10.31857/S0544126924030061
- ID: 655225
Cite item
Abstract
Split-gate embedded Flash memory technology has been around for decades and has become the standard for a wide range of devices, such as microcontrollers and smart cards. Among the, due to a number of advantages, Silicon Storage Technology Super Flash non-volatile memory technology has become the most widespread. This article presents the results of a study of the memory cells structure, examines in detail the principle of their operation and the main technological stages of the production process of forming transistor structures.
Keywords
Full Text

About the authors
D. A. Abdullaev
Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences
Author for correspondence.
Email: abdullaev.d@inme-ras.ru
Russian Federation, Moscow
E. V. Bobrova
Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences
Email: abdullaev.d@inme-ras.ru
Russian Federation, Moscow
R. A. Milovanov
Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences
Email: abdullaev.d@inme-ras.ru
Russian Federation, Moscow
References
- Molas G., Nowak E. Advances in emerging memory technologies: From data storage to artificial intelligence // Applied Sciences. 2021. V. 11. No. 23. P. 11254. https://doi.org/10.3390/app112311254
- Milovanov R.A., Kelm E.A. Structure of EEPROM and FLASH Memory Cells // Nano- and Microsystem Technique. 2015. V. 4. No. 177. P. 45—59.
- Abdullaev D.A., Milovanov R.A., Volkov R.L., Borgard N.I., Lantsev A.N., Vorotilov K.A., Sigov A.S. Ferroelectric memory: state-of-the-art manufacturing and research // Russian Technological Journal. 2020. V. 8. No. 5. P. 44—67. https://doi.org/10.32362/2500-316X-2020-8-5-44-67
- Kim S.S., Yong S.K., Kim W., Kang S., Park H.W., Yoon K.J., Dong S.S., Lee S., Hwang C.S. Review of semiconductor flash memory devices for material and process issues // Advanced Materials. 2022. P. 2200659. https://doi.org/10.1002/adma.202200659
- Koltsov S. SuperFlash is a successful technology for building memory chips. Part 2 // Electronic components. 2013. No. 1. P. 101—105.
- Do N., Van Tran H., Kotov A., Tiwari V. Split-gate floating poly SuperFlash memory technology, design, and reliability // Embedded Flash memory for embedded systems: technology, design for sub-systems, and innovations. 2018. P. 131—178. https://doi.org/10.1007/978-3-319-55306-1_5
- Tkachev Y., Kotov A. Generation of single-and double-charge electron traps in tunnel oxide of flash memory cells under Fowler-Nordheim stress // 2011 IEEE International Integrated Reliability Workshop Final Report. 2011. P. 101—104. https://doi.org/10.1109/IIRW.2011.6142599
- Tkachev Y., Liu X., Kotov A. Floating-gate corner-enhanced poly-to-poly tunneling in split-gate flash memory cells // IEEE transactions on electron devices. 2011. V. 59. No. 1. P. 5—11. https://doi.org/10.1109/TED.2011.2171346
- Tkachev Y. Field-induced generation of electron traps in the tunnel oxide of flash memory cells // 2015 IEEE International Integrated Reliability Workshop. 2015. P. 99—102. https://doi.org/10.1109/IIRW.2015.7437077
- Tkachev Y., Walls J.A. Silicon dioxide degradation in strongly non-uniform electric field // 2017 IEEE International Integrated Reliability Workshop. 2017. P. 1—4. https://doi.org/10.1109/IIRW.2017.8361238
- Lai S. Flash memories: Where we were and where we are going // International Electron Devices Meeting 1998. Technical Digest (Cat. No. 98CH36217). 1998. P. 971—973. https://doi.org/10.1109/IEDM.1998.746516
- Sowards D. Non-Volatile Memory: The principles, the technologies, and their significance to the smart card integrated circuit, 1999.
- Kianian S., Levi A., Lee D., Hu Y.W. A novel 3 volts-only, small sector erase, high density flash E2PROM // Proceedings of 1994 VLSI Technology Symposium. 1994. P. 71—72. https://doi.org/10.1109/VLSIT.1994.324372
- Smeys P. Local oxidation of silicon for isolation. Stanford University: PhD Thesis, 2000.
- Shauly E.N., Rosenthal S. Coverage layout design rules and insertion utilities for CMP-related processes // Journal of Low Power Electronics and Applications. 2020. V. 11. No. 1. P. 2. https://doi.org/10.3390/jlpea11010002
- Sung H.C., Lei T.F., Huang C.M., Kao Y.C., Lin Y.T., Wang C.S. New triple self-aligned (SA3) split-gate flash cell with T-shaped source coupling // Japanese journal of applied physics. 2005. V. 44. No. 10R. P. 7377. https://doi.org/10.1143/JJAP.44.7377
- Mih R., Harrington J., Houlihan K., Lee H.K., Chan K., Johnson J., Chen B., Yan J., Lam C. 0.18 µm modular triple self-aligned embedded split-gate flash memory // 2000 Symposium on VLSI Technology. Digest of Technical Papers (Cat. No. 00CH37104). 2000. P. 120—121. https://doi.org/10.1109/VLSIT.2000.852793
- Chu W.T., Lin H.H., Hsieh C.T., Sung H.C., Wang Y.H., Lin Y.T., Wang C.S. Shrinkable triple self-aligned field-enhanced split-gate flash memory // IEEE transactions on electron devices. 2004. V. 51. No. 10. P. 1667—1671. https://doi.org/10.1109/TED.2004.835995
- Sax H., Kruwinus H., Waters E.A. Polysilicon overfill etch back using wet chemical spin-process technology. An alternative to traditional dry etch and CMP technigues // 10th Annual IEEE/SEMI. Advanced Semiconductor Manufacturing Conference and Workshop. ASMC 99 Proceedings (Cat. No. 99CH36295). 1999. P. 233—238. https://doi.org/10.1109/ASMC.1999.798231
- Do N., Tee L., Hariharan S., Lemke S., Tadayoni M., Yang W., Yue I. A 55 nm logic-process-compatible, split-gate flash memory array fully demonstrated at automotive temperature with high access speed and reliability // 2015 IEEE International Memory Workshop. 2015. P. 1—3. https://doi.org/10.1109/IMW.2015.7150267
- Tkachev Y. Extraction of floating-gate capacitive parameters in split-gate flash memory cells // 2016 International Conference on Microelectronic Test Structures (ICMTS). 2016. P. 110—115. https://doi.org/10.1109/ICMTS.2016.7476186
- Abdullaev D.A. Change set of applied materials at reduction topological norms production of integrated microcircuits // Nano- and Microsystems Technology. 2014. No. 5. P. 32—38.
- Shum D., Luo L.Q., Kong Y.J., Deng F.X., Qu X., Teo Z.Q., Liu X. 40 nm embedded self-aligned split-gate flash technology for high-density automotive microcontrollers // 2017 IEEE International Memory Workshop. 2017. P. 1—4. https://doi.org/10.1109/IMW.2017.7939068
- Guo X., Bayat F.M., Prezioso M., Chen Y., Nguyen B., Do N., Strukov D.B. Temperature-insensitive analog vector-by-matrix multiplier based on 55 nm NOR flash memory cells // 2017 IEEE Custom Integrated Circuits Conference. 2017. P. 1—4. https://doi.org/10.1109/CICC.2017.7993628
- Jourba S., Bollon N., Decobert C., Festes G., Bertello B., Zhou F., Beyer S. Performance and reliability of 4 Mb eFLASH memory array featuring 28 nm split-gate cell with HKMG select transistor // 2020 IEEE International Memory Workshop. 2020. P. 1—4. https://doi.org/10.1109/IMW48823.2020.9108118
- Richter R., Trentzsch M., Dünkel S., Müller J., Moll P., Bayha B., Do N. A cost-efficient 28 nm split-gate eFLASH memory featuring a HKMG hybrid bit cell and HV device // 2018 IEEE International Electron Devices Meeting. 2018. P. 18.5.1—18.5.4. https://doi.org/10.1109/IEDM.2018.8614652
- Do N., Lemke S., Tran H., Tiwari V., Reiten M. Scaling of split-gate flash memory for embedded controllers and machine learning applications // 2020 International Symposium on VLSI Technology, Systems and Applications. 2020. P. 19—20. https://doi.org/10.1109/VLSI-TSA48913.2020.9203593
- Chandra Z., Mubarokah I., Sulthoni M.A. Split-Gate Flash Memory: from Planar to 3D // 2021 International Symposium on Electronics and Smart Devices. 2021. P. 1—5. https://doi.org/10.1109/ISESD53023.2021.9501739
- Do N., Kim J., Lemke S., Tee L., Tkachev Y., Liu X., Reiten M. Scaling split-gate flash memory technology for advanced MCU and emerging applications // 2019 IEEE 11th International Memory Workshop. 2019. P. 1—4. https://doi.org/10.1109/IMW.2019.8739270
- Kotov A., Levi A., Tkachev Y., Markov V. Tunneling phenomenon in SuperFlash cell // Proc. NVM Tech. Symp. 2002. P. 110—115.
- Guan H., Lee D., Li G.P. An analytical model for optimization of programming efficiency and uniformity of split gate source-side injection SuperFlash memory // IEEE Transactions on electron devices. 2003. V. 50. No. 3. P. 809—815. https://doi.org/10.1109/TED.2003.811416
Supplementary files
